Annotation of rpl/lapack/lapack/dla_gerfsx_extended.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
                      2:      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
                      3:      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
                      4:      $                                ERRS_N, ERRS_C, RES, AYB, DY,
                      5:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
                      6:      $                                DZ_UB, IGNORE_CWISE, INFO )
                      7: *
                      8: *     -- LAPACK routine (version 3.2.1)                                 --
                      9: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
                     10: *     -- Jason Riedy of Univ. of California Berkeley.                 --
                     11: *     -- April 2009                                                   --
                     12: *
                     13: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
                     14: *     -- Univ. of California Berkeley and NAG Ltd.                    --
                     15: *
                     16:       IMPLICIT NONE
                     17: *     ..
                     18: *     .. Scalar Arguments ..
                     19:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                     20:      $                   TRANS_TYPE, N_NORMS, ITHRESH
                     21:       LOGICAL            COLEQU, IGNORE_CWISE
                     22:       DOUBLE PRECISION   RTHRESH, DZ_UB
                     23: *     ..
                     24: *     .. Array Arguments ..
                     25:       INTEGER            IPIV( * )
                     26:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     27:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                     28:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
                     29:      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
                     30: *     ..
                     31: *
                     32: *  Purpose
                     33: *  =======
                     34: * 
                     35: *  DLA_GERFSX_EXTENDED improves the computed solution to a system of
                     36: *  linear equations by performing extra-precise iterative refinement
                     37: *  and provides error bounds and backward error estimates for the solution.
                     38: *  This subroutine is called by DGERFSX to perform iterative refinement.
                     39: *  In addition to normwise error bound, the code provides maximum
                     40: *  componentwise error bound if possible. See comments for ERR_BNDS_NORM
                     41: *  and ERR_BNDS_COMP for details of the error bounds. Note that this
                     42: *  subroutine is only resonsible for setting the second fields of
                     43: *  ERR_BNDS_NORM and ERR_BNDS_COMP.
                     44: *
                     45: *  Arguments
                     46: *  =========
                     47: *
                     48: *     PREC_TYPE      (input) INTEGER
                     49: *     Specifies the intermediate precision to be used in refinement.
                     50: *     The value is defined by ILAPREC(P) where P is a CHARACTER and
                     51: *     P    = 'S':  Single
                     52: *          = 'D':  Double
                     53: *          = 'I':  Indigenous
                     54: *          = 'X', 'E':  Extra
                     55: *
                     56: *     TRANS_TYPE     (input) INTEGER
                     57: *     Specifies the transposition operation on A.
                     58: *     The value is defined by ILATRANS(T) where T is a CHARACTER and
                     59: *     T    = 'N':  No transpose
                     60: *          = 'T':  Transpose
                     61: *          = 'C':  Conjugate transpose
                     62: *
                     63: *     N              (input) INTEGER
                     64: *     The number of linear equations, i.e., the order of the
                     65: *     matrix A.  N >= 0.
                     66: *
                     67: *     NRHS           (input) INTEGER
                     68: *     The number of right-hand-sides, i.e., the number of columns of the
                     69: *     matrix B.
                     70: *
                     71: *     A              (input) DOUBLE PRECISION array, dimension (LDA,N)
                     72: *     On entry, the N-by-N matrix A.
                     73: *
                     74: *     LDA            (input) INTEGER
                     75: *     The leading dimension of the array A.  LDA >= max(1,N).
                     76: *
                     77: *     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N)
                     78: *     The factors L and U from the factorization
                     79: *     A = P*L*U as computed by DGETRF.
                     80: *
                     81: *     LDAF           (input) INTEGER
                     82: *     The leading dimension of the array AF.  LDAF >= max(1,N).
                     83: *
                     84: *     IPIV           (input) INTEGER array, dimension (N)
                     85: *     The pivot indices from the factorization A = P*L*U
                     86: *     as computed by DGETRF; row i of the matrix was interchanged
                     87: *     with row IPIV(i).
                     88: *
                     89: *     COLEQU         (input) LOGICAL
                     90: *     If .TRUE. then column equilibration was done to A before calling
                     91: *     this routine. This is needed to compute the solution and error
                     92: *     bounds correctly.
                     93: *
                     94: *     C              (input) DOUBLE PRECISION  array, dimension (N)
                     95: *     The column scale factors for A. If COLEQU = .FALSE., C
                     96: *     is not accessed. If C is input, each element of C should be a power
                     97: *     of the radix to ensure a reliable solution and error estimates.
                     98: *     Scaling by powers of the radix does not cause rounding errors unless
                     99: *     the result underflows or overflows. Rounding errors during scaling
                    100: *     lead to refining with a matrix that is not equivalent to the
                    101: *     input matrix, producing error estimates that may not be
                    102: *     reliable.
                    103: *
                    104: *     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                    105: *     The right-hand-side matrix B.
                    106: *
                    107: *     LDB            (input) INTEGER
                    108: *     The leading dimension of the array B.  LDB >= max(1,N).
                    109: *
                    110: *     Y              (input/output) DOUBLE PRECISION array, dimension
                    111: *                    (LDY,NRHS)
                    112: *     On entry, the solution matrix X, as computed by DGETRS.
                    113: *     On exit, the improved solution matrix Y.
                    114: *
                    115: *     LDY            (input) INTEGER
                    116: *     The leading dimension of the array Y.  LDY >= max(1,N).
                    117: *
                    118: *     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS)
                    119: *     On exit, BERR_OUT(j) contains the componentwise relative backward
                    120: *     error for right-hand-side j from the formula
                    121: *         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    122: *     where abs(Z) is the componentwise absolute value of the matrix
                    123: *     or vector Z. This is computed by DLA_LIN_BERR.
                    124: *
                    125: *     N_NORMS        (input) INTEGER
                    126: *     Determines which error bounds to return (see ERR_BNDS_NORM
                    127: *     and ERR_BNDS_COMP).
                    128: *     If N_NORMS >= 1 return normwise error bounds.
                    129: *     If N_NORMS >= 2 return componentwise error bounds.
                    130: *
                    131: *     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension
                    132: *                    (NRHS, N_ERR_BNDS)
                    133: *     For each right-hand side, this array contains information about
                    134: *     various error bounds and condition numbers corresponding to the
                    135: *     normwise relative error, which is defined as follows:
                    136: *
                    137: *     Normwise relative error in the ith solution vector:
                    138: *             max_j (abs(XTRUE(j,i) - X(j,i)))
                    139: *            ------------------------------
                    140: *                  max_j abs(X(j,i))
                    141: *
                    142: *     The array is indexed by the type of error information as described
                    143: *     below. There currently are up to three pieces of information
                    144: *     returned.
                    145: *
                    146: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    147: *     right-hand side.
                    148: *
                    149: *     The second index in ERR_BNDS_NORM(:,err) contains the following
                    150: *     three fields:
                    151: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    152: *              reciprocal condition number is less than the threshold
                    153: *              sqrt(n) * slamch('Epsilon').
                    154: *
                    155: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    156: *              almost certainly within a factor of 10 of the true error
                    157: *              so long as the next entry is greater than the threshold
                    158: *              sqrt(n) * slamch('Epsilon'). This error bound should only
                    159: *              be trusted if the previous boolean is true.
                    160: *
                    161: *     err = 3  Reciprocal condition number: Estimated normwise
                    162: *              reciprocal condition number.  Compared with the threshold
                    163: *              sqrt(n) * slamch('Epsilon') to determine if the error
                    164: *              estimate is "guaranteed". These reciprocal condition
                    165: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    166: *              appropriately scaled matrix Z.
                    167: *              Let Z = S*A, where S scales each row by a power of the
                    168: *              radix so all absolute row sums of Z are approximately 1.
                    169: *
                    170: *     This subroutine is only responsible for setting the second field
                    171: *     above.
                    172: *     See Lapack Working Note 165 for further details and extra
                    173: *     cautions.
                    174: *
                    175: *     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension
                    176: *                    (NRHS, N_ERR_BNDS)
                    177: *     For each right-hand side, this array contains information about
                    178: *     various error bounds and condition numbers corresponding to the
                    179: *     componentwise relative error, which is defined as follows:
                    180: *
                    181: *     Componentwise relative error in the ith solution vector:
                    182: *                    abs(XTRUE(j,i) - X(j,i))
                    183: *             max_j ----------------------
                    184: *                         abs(X(j,i))
                    185: *
                    186: *     The array is indexed by the right-hand side i (on which the
                    187: *     componentwise relative error depends), and the type of error
                    188: *     information as described below. There currently are up to three
                    189: *     pieces of information returned for each right-hand side. If
                    190: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    191: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    192: *     the first (:,N_ERR_BNDS) entries are returned.
                    193: *
                    194: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    195: *     right-hand side.
                    196: *
                    197: *     The second index in ERR_BNDS_COMP(:,err) contains the following
                    198: *     three fields:
                    199: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    200: *              reciprocal condition number is less than the threshold
                    201: *              sqrt(n) * slamch('Epsilon').
                    202: *
                    203: *     err = 2 "Guaranteed" error bound: The estimated forward error,
                    204: *              almost certainly within a factor of 10 of the true error
                    205: *              so long as the next entry is greater than the threshold
                    206: *              sqrt(n) * slamch('Epsilon'). This error bound should only
                    207: *              be trusted if the previous boolean is true.
                    208: *
                    209: *     err = 3  Reciprocal condition number: Estimated componentwise
                    210: *              reciprocal condition number.  Compared with the threshold
                    211: *              sqrt(n) * slamch('Epsilon') to determine if the error
                    212: *              estimate is "guaranteed". These reciprocal condition
                    213: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    214: *              appropriately scaled matrix Z.
                    215: *              Let Z = S*(A*diag(x)), where x is the solution for the
                    216: *              current right-hand side and S scales each row of
                    217: *              A*diag(x) by a power of the radix so all absolute row
                    218: *              sums of Z are approximately 1.
                    219: *
                    220: *     This subroutine is only responsible for setting the second field
                    221: *     above.
                    222: *     See Lapack Working Note 165 for further details and extra
                    223: *     cautions.
                    224: *
                    225: *     RES            (input) DOUBLE PRECISION array, dimension (N)
                    226: *     Workspace to hold the intermediate residual.
                    227: *
                    228: *     AYB            (input) DOUBLE PRECISION array, dimension (N)
                    229: *     Workspace. This can be the same workspace passed for Y_TAIL.
                    230: *
                    231: *     DY             (input) DOUBLE PRECISION array, dimension (N)
                    232: *     Workspace to hold the intermediate solution.
                    233: *
                    234: *     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N)
                    235: *     Workspace to hold the trailing bits of the intermediate solution.
                    236: *
                    237: *     RCOND          (input) DOUBLE PRECISION
                    238: *     Reciprocal scaled condition number.  This is an estimate of the
                    239: *     reciprocal Skeel condition number of the matrix A after
                    240: *     equilibration (if done).  If this is less than the machine
                    241: *     precision (in particular, if it is zero), the matrix is singular
                    242: *     to working precision.  Note that the error may still be small even
                    243: *     if this number is very small and the matrix appears ill-
                    244: *     conditioned.
                    245: *
                    246: *     ITHRESH        (input) INTEGER
                    247: *     The maximum number of residual computations allowed for
                    248: *     refinement. The default is 10. For 'aggressive' set to 100 to
                    249: *     permit convergence using approximate factorizations or
                    250: *     factorizations other than LU. If the factorization uses a
                    251: *     technique other than Gaussian elimination, the guarantees in
                    252: *     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
                    253: *
                    254: *     RTHRESH        (input) DOUBLE PRECISION
                    255: *     Determines when to stop refinement if the error estimate stops
                    256: *     decreasing. Refinement will stop when the next solution no longer
                    257: *     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    258: *     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    259: *     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    260: *     convergence on extremely ill-conditioned matrices. See LAWN 165
                    261: *     for more details.
                    262: *
                    263: *     DZ_UB          (input) DOUBLE PRECISION
                    264: *     Determines when to start considering componentwise convergence.
                    265: *     Componentwise convergence is only considered after each component
                    266: *     of the solution Y is stable, which we definte as the relative
                    267: *     change in each component being less than DZ_UB. The default value
                    268: *     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    269: *     more details.
                    270: *
                    271: *     IGNORE_CWISE   (input) LOGICAL
                    272: *     If .TRUE. then ignore componentwise convergence. Default value
                    273: *     is .FALSE..
                    274: *
                    275: *     INFO           (output) INTEGER
                    276: *       = 0:  Successful exit.
                    277: *       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
                    278: *             value
                    279: *
                    280: *  =====================================================================
                    281: *
                    282: *     .. Local Scalars ..
                    283:       CHARACTER          TRANS
                    284:       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
                    285:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    286:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    287:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    288:      $                   EPS, HUGEVAL, INCR_THRESH
                    289:       LOGICAL            INCR_PREC
                    290: *     ..
                    291: *     .. Parameters ..
                    292:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    293:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    294:      $                   EXTRA_Y
                    295:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    296:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    297:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    298:      $                   EXTRA_Y = 2 )
                    299:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    300:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    301:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    302:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    303:      $                   BERR_I = 3 )
                    304:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    305:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    306:      $                   PIV_GROWTH_I = 9 )
                    307:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    308:      $                   LA_LINRX_CWISE_I
                    309:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    310:      $                   LA_LINRX_ITHRESH_I = 2 )
                    311:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    312:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    313:      $                   LA_LINRX_RCOND_I
                    314:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    315:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    316: *     ..
                    317: *     .. External Subroutines ..
                    318:       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
                    319:      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
                    320:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
                    321:       DOUBLE PRECISION   DLAMCH
                    322:       CHARACTER          CHLA_TRANSTYPE
                    323: *     ..
                    324: *     .. Intrinsic Functions ..
                    325:       INTRINSIC          ABS, MAX, MIN
                    326: *     ..
                    327: *     .. Executable Statements ..
                    328: *
                    329:       IF ( INFO.NE.0 ) RETURN
                    330:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
                    331:       EPS = DLAMCH( 'Epsilon' )
                    332:       HUGEVAL = DLAMCH( 'Overflow' )
                    333: *     Force HUGEVAL to Inf
                    334:       HUGEVAL = HUGEVAL * HUGEVAL
                    335: *     Using HUGEVAL may lead to spurious underflows.
                    336:       INCR_THRESH = DBLE( N ) * EPS
                    337: *
                    338:       DO J = 1, NRHS
                    339:          Y_PREC_STATE = EXTRA_RESIDUAL
                    340:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    341:             DO I = 1, N
                    342:                Y_TAIL( I ) = 0.0D+0
                    343:             END DO
                    344:          END IF
                    345: 
                    346:          DXRAT = 0.0D+0
                    347:          DXRATMAX = 0.0D+0
                    348:          DZRAT = 0.0D+0
                    349:          DZRATMAX = 0.0D+0
                    350:          FINAL_DX_X = HUGEVAL
                    351:          FINAL_DZ_Z = HUGEVAL
                    352:          PREVNORMDX = HUGEVAL
                    353:          PREV_DZ_Z = HUGEVAL
                    354:          DZ_Z = HUGEVAL
                    355:          DX_X = HUGEVAL
                    356: 
                    357:          X_STATE = WORKING_STATE
                    358:          Z_STATE = UNSTABLE_STATE
                    359:          INCR_PREC = .FALSE.
                    360: 
                    361:          DO CNT = 1, ITHRESH
                    362: *
                    363: *         Compute residual RES = B_s - op(A_s) * Y,
                    364: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    365: *
                    366:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    367:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    368:                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
                    369:      $              1.0D+0, RES, 1 )
                    370:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    371:                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
                    372:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
                    373:             ELSE
                    374:                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
                    375:      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
                    376:             END IF
                    377: 
                    378: !        XXX: RES is no longer needed.
                    379:             CALL DCOPY( N, RES, 1, DY, 1 )
                    380:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
                    381: *
                    382: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    383: *
                    384:             NORMX = 0.0D+0
                    385:             NORMY = 0.0D+0
                    386:             NORMDX = 0.0D+0
                    387:             DZ_Z = 0.0D+0
                    388:             YMIN = HUGEVAL
                    389: *
                    390:             DO I = 1, N
                    391:                YK = ABS( Y( I, J ) )
                    392:                DYK = ABS( DY( I ) )
                    393: 
                    394:                IF ( YK .NE. 0.0D+0 ) THEN
                    395:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    396:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    397:                   DZ_Z = HUGEVAL
                    398:                END IF
                    399: 
                    400:                YMIN = MIN( YMIN, YK )
                    401: 
                    402:                NORMY = MAX( NORMY, YK )
                    403: 
                    404:                IF ( COLEQU ) THEN
                    405:                   NORMX = MAX( NORMX, YK * C( I ) )
                    406:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
                    407:                ELSE
                    408:                   NORMX = NORMY
                    409:                   NORMDX = MAX( NORMDX, DYK )
                    410:                END IF
                    411:             END DO
                    412: 
                    413:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    414:                DX_X = NORMDX / NORMX
                    415:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    416:                DX_X = 0.0D+0
                    417:             ELSE
                    418:                DX_X = HUGEVAL
                    419:             END IF
                    420: 
                    421:             DXRAT = NORMDX / PREVNORMDX
                    422:             DZRAT = DZ_Z / PREV_DZ_Z
                    423: *
                    424: *         Check termination criteria
                    425: *
                    426:             IF (.NOT.IGNORE_CWISE
                    427:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
                    428:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
                    429:      $           INCR_PREC = .TRUE.
                    430: 
                    431:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    432:      $           X_STATE = WORKING_STATE
                    433:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    434:                IF ( DX_X .LE. EPS ) THEN
                    435:                   X_STATE = CONV_STATE
                    436:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    437:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    438:                      INCR_PREC = .TRUE.
                    439:                   ELSE
                    440:                      X_STATE = NOPROG_STATE
                    441:                   END IF
                    442:                ELSE
                    443:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    444:                END IF
                    445:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    446:             END IF
                    447: 
                    448:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    449:      $           Z_STATE = WORKING_STATE
                    450:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    451:      $           Z_STATE = WORKING_STATE
                    452:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    453:                IF ( DZ_Z .LE. EPS ) THEN
                    454:                   Z_STATE = CONV_STATE
                    455:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    456:                   Z_STATE = UNSTABLE_STATE
                    457:                   DZRATMAX = 0.0D+0
                    458:                   FINAL_DZ_Z = HUGEVAL
                    459:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    460:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    461:                      INCR_PREC = .TRUE.
                    462:                   ELSE
                    463:                      Z_STATE = NOPROG_STATE
                    464:                   END IF
                    465:                ELSE
                    466:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    467:                END IF
                    468:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    469:             END IF
                    470: *
                    471: *           Exit if both normwise and componentwise stopped working,
                    472: *           but if componentwise is unstable, let it go at least two
                    473: *           iterations.
                    474: *
                    475:             IF ( X_STATE.NE.WORKING_STATE ) THEN
                    476:                IF ( IGNORE_CWISE) GOTO 666
                    477:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
                    478:      $              GOTO 666
                    479:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
                    480:             END IF
                    481: 
                    482:             IF ( INCR_PREC ) THEN
                    483:                INCR_PREC = .FALSE.
                    484:                Y_PREC_STATE = Y_PREC_STATE + 1
                    485:                DO I = 1, N
                    486:                   Y_TAIL( I ) = 0.0D+0
                    487:                END DO
                    488:             END IF
                    489: 
                    490:             PREVNORMDX = NORMDX
                    491:             PREV_DZ_Z = DZ_Z
                    492: *
                    493: *           Update soluton.
                    494: *
                    495:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
                    496:                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
                    497:             ELSE
                    498:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
                    499:             END IF
                    500: 
                    501:          END DO
                    502: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    503:  666     CONTINUE
                    504: *
                    505: *     Set final_* when cnt hits ithresh.
                    506: *
                    507:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    508:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    509: *
                    510: *     Compute error bounds
                    511: *
                    512:          IF (N_NORMS .GE. 1) THEN
                    513:             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
                    514:          END IF
                    515:          IF ( N_NORMS .GE. 2 ) THEN
                    516:             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
                    517:          END IF
                    518: *
                    519: *     Compute componentwise relative backward error from formula
                    520: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    521: *     where abs(Z) is the componentwise absolute value of the matrix
                    522: *     or vector Z.
                    523: *
                    524: *         Compute residual RES = B_s - op(A_s) * Y,
                    525: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    526: *
                    527:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    528:          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, 
                    529:      $     RES, 1 )
                    530: 
                    531:          DO I = 1, N
                    532:             AYB( I ) = ABS( B( I, J ) )
                    533:          END DO
                    534: *
                    535: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    536: *
                    537:          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
                    538:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    539: 
                    540:          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    541: *
                    542: *     End of loop for each RHS.
                    543: *
                    544:       END DO
                    545: *
                    546:       RETURN
                    547:       END

CVSweb interface <joel.bertrand@systella.fr>