Annotation of rpl/lapack/lapack/dla_gerfsx_extended.f, revision 1.12

1.8       bertrand    1: *> \brief \b DLA_GERFSX_EXTENDED improves the computed solution to a system of linear equations for general matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.12    ! bertrand    5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
1.5       bertrand    7: *
                      8: *> \htmlonly
1.12    ! bertrand    9: *> Download DLA_GERFSX_EXTENDED + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
1.5       bertrand   15: *> [TXT]</a>
1.12    ! bertrand   16: *> \endhtmlonly
1.5       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
                     22: *                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
                     23: *                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
                     24: *                                       ERRS_N, ERRS_C, RES, AYB, DY,
                     25: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
                     26: *                                       DZ_UB, IGNORE_CWISE, INFO )
1.12    ! bertrand   27: *
1.5       bertrand   28: *       .. Scalar Arguments ..
                     29: *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                     30: *      $                   TRANS_TYPE, N_NORMS, ITHRESH
                     31: *       LOGICAL            COLEQU, IGNORE_CWISE
                     32: *       DOUBLE PRECISION   RTHRESH, DZ_UB
                     33: *       ..
                     34: *       .. Array Arguments ..
                     35: *       INTEGER            IPIV( * )
                     36: *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                     37: *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                     38: *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
                     39: *      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
                     40: *       ..
1.12    ! bertrand   41: *
1.5       bertrand   42: *
                     43: *> \par Purpose:
                     44: *  =============
                     45: *>
                     46: *> \verbatim
                     47: *>
1.12    ! bertrand   48: *>
1.5       bertrand   49: *> DLA_GERFSX_EXTENDED improves the computed solution to a system of
                     50: *> linear equations by performing extra-precise iterative refinement
                     51: *> and provides error bounds and backward error estimates for the solution.
                     52: *> This subroutine is called by DGERFSX to perform iterative refinement.
                     53: *> In addition to normwise error bound, the code provides maximum
                     54: *> componentwise error bound if possible. See comments for ERRS_N
                     55: *> and ERRS_C for details of the error bounds. Note that this
                     56: *> subroutine is only resonsible for setting the second fields of
                     57: *> ERRS_N and ERRS_C.
                     58: *> \endverbatim
                     59: *
                     60: *  Arguments:
                     61: *  ==========
                     62: *
                     63: *> \param[in] PREC_TYPE
                     64: *> \verbatim
                     65: *>          PREC_TYPE is INTEGER
                     66: *>     Specifies the intermediate precision to be used in refinement.
                     67: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
                     68: *>     P    = 'S':  Single
                     69: *>          = 'D':  Double
                     70: *>          = 'I':  Indigenous
                     71: *>          = 'X', 'E':  Extra
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] TRANS_TYPE
                     75: *> \verbatim
                     76: *>          TRANS_TYPE is INTEGER
                     77: *>     Specifies the transposition operation on A.
                     78: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
                     79: *>     T    = 'N':  No transpose
                     80: *>          = 'T':  Transpose
                     81: *>          = 'C':  Conjugate transpose
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] N
                     85: *> \verbatim
                     86: *>          N is INTEGER
                     87: *>     The number of linear equations, i.e., the order of the
                     88: *>     matrix A.  N >= 0.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] NRHS
                     92: *> \verbatim
                     93: *>          NRHS is INTEGER
                     94: *>     The number of right-hand-sides, i.e., the number of columns of the
                     95: *>     matrix B.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] A
                     99: *> \verbatim
                    100: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    101: *>     On entry, the N-by-N matrix A.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] LDA
                    105: *> \verbatim
                    106: *>          LDA is INTEGER
                    107: *>     The leading dimension of the array A.  LDA >= max(1,N).
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] AF
                    111: *> \verbatim
                    112: *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
                    113: *>     The factors L and U from the factorization
                    114: *>     A = P*L*U as computed by DGETRF.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] LDAF
                    118: *> \verbatim
                    119: *>          LDAF is INTEGER
                    120: *>     The leading dimension of the array AF.  LDAF >= max(1,N).
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in] IPIV
                    124: *> \verbatim
                    125: *>          IPIV is INTEGER array, dimension (N)
                    126: *>     The pivot indices from the factorization A = P*L*U
                    127: *>     as computed by DGETRF; row i of the matrix was interchanged
                    128: *>     with row IPIV(i).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] COLEQU
                    132: *> \verbatim
                    133: *>          COLEQU is LOGICAL
                    134: *>     If .TRUE. then column equilibration was done to A before calling
                    135: *>     this routine. This is needed to compute the solution and error
                    136: *>     bounds correctly.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] C
                    140: *> \verbatim
                    141: *>          C is DOUBLE PRECISION array, dimension (N)
                    142: *>     The column scale factors for A. If COLEQU = .FALSE., C
                    143: *>     is not accessed. If C is input, each element of C should be a power
                    144: *>     of the radix to ensure a reliable solution and error estimates.
                    145: *>     Scaling by powers of the radix does not cause rounding errors unless
                    146: *>     the result underflows or overflows. Rounding errors during scaling
                    147: *>     lead to refining with a matrix that is not equivalent to the
                    148: *>     input matrix, producing error estimates that may not be
                    149: *>     reliable.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] B
                    153: *> \verbatim
                    154: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    155: *>     The right-hand-side matrix B.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] LDB
                    159: *> \verbatim
                    160: *>          LDB is INTEGER
                    161: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[in,out] Y
                    165: *> \verbatim
                    166: *>          Y is DOUBLE PRECISION array, dimension
                    167: *>                    (LDY,NRHS)
                    168: *>     On entry, the solution matrix X, as computed by DGETRS.
                    169: *>     On exit, the improved solution matrix Y.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[in] LDY
                    173: *> \verbatim
                    174: *>          LDY is INTEGER
                    175: *>     The leading dimension of the array Y.  LDY >= max(1,N).
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] BERR_OUT
                    179: *> \verbatim
                    180: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
                    181: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
                    182: *>     error for right-hand-side j from the formula
                    183: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    184: *>     where abs(Z) is the componentwise absolute value of the matrix
                    185: *>     or vector Z. This is computed by DLA_LIN_BERR.
                    186: *> \endverbatim
                    187: *>
                    188: *> \param[in] N_NORMS
                    189: *> \verbatim
                    190: *>          N_NORMS is INTEGER
                    191: *>     Determines which error bounds to return (see ERRS_N
                    192: *>     and ERRS_C).
                    193: *>     If N_NORMS >= 1 return normwise error bounds.
                    194: *>     If N_NORMS >= 2 return componentwise error bounds.
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[in,out] ERRS_N
                    198: *> \verbatim
                    199: *>          ERRS_N is DOUBLE PRECISION array, dimension
                    200: *>                    (NRHS, N_ERR_BNDS)
                    201: *>     For each right-hand side, this array contains information about
                    202: *>     various error bounds and condition numbers corresponding to the
                    203: *>     normwise relative error, which is defined as follows:
                    204: *>
                    205: *>     Normwise relative error in the ith solution vector:
                    206: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    207: *>            ------------------------------
                    208: *>                  max_j abs(X(j,i))
                    209: *>
                    210: *>     The array is indexed by the type of error information as described
                    211: *>     below. There currently are up to three pieces of information
                    212: *>     returned.
                    213: *>
                    214: *>     The first index in ERRS_N(i,:) corresponds to the ith
                    215: *>     right-hand side.
                    216: *>
                    217: *>     The second index in ERRS_N(:,err) contains the following
                    218: *>     three fields:
                    219: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    220: *>              reciprocal condition number is less than the threshold
                    221: *>              sqrt(n) * slamch('Epsilon').
                    222: *>
                    223: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    224: *>              almost certainly within a factor of 10 of the true error
                    225: *>              so long as the next entry is greater than the threshold
                    226: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    227: *>              be trusted if the previous boolean is true.
                    228: *>
                    229: *>     err = 3  Reciprocal condition number: Estimated normwise
                    230: *>              reciprocal condition number.  Compared with the threshold
                    231: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    232: *>              estimate is "guaranteed". These reciprocal condition
                    233: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    234: *>              appropriately scaled matrix Z.
                    235: *>              Let Z = S*A, where S scales each row by a power of the
                    236: *>              radix so all absolute row sums of Z are approximately 1.
                    237: *>
                    238: *>     This subroutine is only responsible for setting the second field
                    239: *>     above.
                    240: *>     See Lapack Working Note 165 for further details and extra
                    241: *>     cautions.
                    242: *> \endverbatim
                    243: *>
                    244: *> \param[in,out] ERRS_C
                    245: *> \verbatim
                    246: *>          ERRS_C is DOUBLE PRECISION array, dimension
                    247: *>                    (NRHS, N_ERR_BNDS)
                    248: *>     For each right-hand side, this array contains information about
                    249: *>     various error bounds and condition numbers corresponding to the
                    250: *>     componentwise relative error, which is defined as follows:
                    251: *>
                    252: *>     Componentwise relative error in the ith solution vector:
                    253: *>                    abs(XTRUE(j,i) - X(j,i))
                    254: *>             max_j ----------------------
                    255: *>                         abs(X(j,i))
                    256: *>
                    257: *>     The array is indexed by the right-hand side i (on which the
                    258: *>     componentwise relative error depends), and the type of error
                    259: *>     information as described below. There currently are up to three
                    260: *>     pieces of information returned for each right-hand side. If
                    261: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    262: *>     ERRS_C is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    263: *>     the first (:,N_ERR_BNDS) entries are returned.
                    264: *>
                    265: *>     The first index in ERRS_C(i,:) corresponds to the ith
                    266: *>     right-hand side.
                    267: *>
                    268: *>     The second index in ERRS_C(:,err) contains the following
                    269: *>     three fields:
                    270: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    271: *>              reciprocal condition number is less than the threshold
                    272: *>              sqrt(n) * slamch('Epsilon').
                    273: *>
                    274: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    275: *>              almost certainly within a factor of 10 of the true error
                    276: *>              so long as the next entry is greater than the threshold
                    277: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    278: *>              be trusted if the previous boolean is true.
                    279: *>
                    280: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    281: *>              reciprocal condition number.  Compared with the threshold
                    282: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    283: *>              estimate is "guaranteed". These reciprocal condition
                    284: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    285: *>              appropriately scaled matrix Z.
                    286: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    287: *>              current right-hand side and S scales each row of
                    288: *>              A*diag(x) by a power of the radix so all absolute row
                    289: *>              sums of Z are approximately 1.
                    290: *>
                    291: *>     This subroutine is only responsible for setting the second field
                    292: *>     above.
                    293: *>     See Lapack Working Note 165 for further details and extra
                    294: *>     cautions.
                    295: *> \endverbatim
                    296: *>
                    297: *> \param[in] RES
                    298: *> \verbatim
                    299: *>          RES is DOUBLE PRECISION array, dimension (N)
                    300: *>     Workspace to hold the intermediate residual.
                    301: *> \endverbatim
                    302: *>
                    303: *> \param[in] AYB
                    304: *> \verbatim
                    305: *>          AYB is DOUBLE PRECISION array, dimension (N)
                    306: *>     Workspace. This can be the same workspace passed for Y_TAIL.
                    307: *> \endverbatim
                    308: *>
                    309: *> \param[in] DY
                    310: *> \verbatim
                    311: *>          DY is DOUBLE PRECISION array, dimension (N)
                    312: *>     Workspace to hold the intermediate solution.
                    313: *> \endverbatim
                    314: *>
                    315: *> \param[in] Y_TAIL
                    316: *> \verbatim
                    317: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
                    318: *>     Workspace to hold the trailing bits of the intermediate solution.
                    319: *> \endverbatim
                    320: *>
                    321: *> \param[in] RCOND
                    322: *> \verbatim
                    323: *>          RCOND is DOUBLE PRECISION
                    324: *>     Reciprocal scaled condition number.  This is an estimate of the
                    325: *>     reciprocal Skeel condition number of the matrix A after
                    326: *>     equilibration (if done).  If this is less than the machine
                    327: *>     precision (in particular, if it is zero), the matrix is singular
                    328: *>     to working precision.  Note that the error may still be small even
                    329: *>     if this number is very small and the matrix appears ill-
                    330: *>     conditioned.
                    331: *> \endverbatim
                    332: *>
                    333: *> \param[in] ITHRESH
                    334: *> \verbatim
                    335: *>          ITHRESH is INTEGER
                    336: *>     The maximum number of residual computations allowed for
                    337: *>     refinement. The default is 10. For 'aggressive' set to 100 to
                    338: *>     permit convergence using approximate factorizations or
                    339: *>     factorizations other than LU. If the factorization uses a
                    340: *>     technique other than Gaussian elimination, the guarantees in
                    341: *>     ERRS_N and ERRS_C may no longer be trustworthy.
                    342: *> \endverbatim
                    343: *>
                    344: *> \param[in] RTHRESH
                    345: *> \verbatim
                    346: *>          RTHRESH is DOUBLE PRECISION
                    347: *>     Determines when to stop refinement if the error estimate stops
                    348: *>     decreasing. Refinement will stop when the next solution no longer
                    349: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    350: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    351: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    352: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
                    353: *>     for more details.
                    354: *> \endverbatim
                    355: *>
                    356: *> \param[in] DZ_UB
                    357: *> \verbatim
                    358: *>          DZ_UB is DOUBLE PRECISION
                    359: *>     Determines when to start considering componentwise convergence.
                    360: *>     Componentwise convergence is only considered after each component
                    361: *>     of the solution Y is stable, which we definte as the relative
                    362: *>     change in each component being less than DZ_UB. The default value
                    363: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    364: *>     more details.
                    365: *> \endverbatim
                    366: *>
                    367: *> \param[in] IGNORE_CWISE
                    368: *> \verbatim
                    369: *>          IGNORE_CWISE is LOGICAL
                    370: *>     If .TRUE. then ignore componentwise convergence. Default value
                    371: *>     is .FALSE..
                    372: *> \endverbatim
                    373: *>
                    374: *> \param[out] INFO
                    375: *> \verbatim
                    376: *>          INFO is INTEGER
                    377: *>       = 0:  Successful exit.
                    378: *>       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
                    379: *>             value
                    380: *> \endverbatim
                    381: *
                    382: *  Authors:
                    383: *  ========
                    384: *
1.12    ! bertrand  385: *> \author Univ. of Tennessee
        !           386: *> \author Univ. of California Berkeley
        !           387: *> \author Univ. of Colorado Denver
        !           388: *> \author NAG Ltd.
1.5       bertrand  389: *
1.12    ! bertrand  390: *> \date December 2016
1.5       bertrand  391: *
                    392: *> \ingroup doubleGEcomputational
                    393: *
                    394: *  =====================================================================
1.1       bertrand  395:       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
                    396:      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
                    397:      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
                    398:      $                                ERRS_N, ERRS_C, RES, AYB, DY,
                    399:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
                    400:      $                                DZ_UB, IGNORE_CWISE, INFO )
                    401: *
1.12    ! bertrand  402: *  -- LAPACK computational routine (version 3.7.0) --
1.5       bertrand  403: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    404: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12    ! bertrand  405: *     December 2016
1.1       bertrand  406: *
                    407: *     .. Scalar Arguments ..
                    408:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
                    409:      $                   TRANS_TYPE, N_NORMS, ITHRESH
                    410:       LOGICAL            COLEQU, IGNORE_CWISE
                    411:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    412: *     ..
                    413: *     .. Array Arguments ..
                    414:       INTEGER            IPIV( * )
                    415:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
                    416:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
                    417:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
                    418:      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
                    419: *     ..
                    420: *
                    421: *  =====================================================================
                    422: *
                    423: *     .. Local Scalars ..
                    424:       CHARACTER          TRANS
                    425:       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
                    426:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    427:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    428:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    429:      $                   EPS, HUGEVAL, INCR_THRESH
                    430:       LOGICAL            INCR_PREC
                    431: *     ..
                    432: *     .. Parameters ..
                    433:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    434:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    435:      $                   EXTRA_Y
                    436:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    437:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    438:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    439:      $                   EXTRA_Y = 2 )
                    440:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    441:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    442:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    443:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    444:      $                   BERR_I = 3 )
                    445:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    446:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    447:      $                   PIV_GROWTH_I = 9 )
                    448:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    449:      $                   LA_LINRX_CWISE_I
                    450:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    451:      $                   LA_LINRX_ITHRESH_I = 2 )
                    452:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    453:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    454:      $                   LA_LINRX_RCOND_I
                    455:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    456:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    457: *     ..
                    458: *     .. External Subroutines ..
                    459:       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
                    460:      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
                    461:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
                    462:       DOUBLE PRECISION   DLAMCH
                    463:       CHARACTER          CHLA_TRANSTYPE
                    464: *     ..
                    465: *     .. Intrinsic Functions ..
                    466:       INTRINSIC          ABS, MAX, MIN
                    467: *     ..
                    468: *     .. Executable Statements ..
                    469: *
                    470:       IF ( INFO.NE.0 ) RETURN
                    471:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
                    472:       EPS = DLAMCH( 'Epsilon' )
                    473:       HUGEVAL = DLAMCH( 'Overflow' )
                    474: *     Force HUGEVAL to Inf
                    475:       HUGEVAL = HUGEVAL * HUGEVAL
                    476: *     Using HUGEVAL may lead to spurious underflows.
                    477:       INCR_THRESH = DBLE( N ) * EPS
                    478: *
                    479:       DO J = 1, NRHS
                    480:          Y_PREC_STATE = EXTRA_RESIDUAL
                    481:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    482:             DO I = 1, N
                    483:                Y_TAIL( I ) = 0.0D+0
                    484:             END DO
                    485:          END IF
                    486: 
                    487:          DXRAT = 0.0D+0
                    488:          DXRATMAX = 0.0D+0
                    489:          DZRAT = 0.0D+0
                    490:          DZRATMAX = 0.0D+0
                    491:          FINAL_DX_X = HUGEVAL
                    492:          FINAL_DZ_Z = HUGEVAL
                    493:          PREVNORMDX = HUGEVAL
                    494:          PREV_DZ_Z = HUGEVAL
                    495:          DZ_Z = HUGEVAL
                    496:          DX_X = HUGEVAL
                    497: 
                    498:          X_STATE = WORKING_STATE
                    499:          Z_STATE = UNSTABLE_STATE
                    500:          INCR_PREC = .FALSE.
                    501: 
                    502:          DO CNT = 1, ITHRESH
                    503: *
                    504: *         Compute residual RES = B_s - op(A_s) * Y,
                    505: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    506: *
                    507:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    508:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    509:                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
                    510:      $              1.0D+0, RES, 1 )
                    511:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    512:                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
                    513:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
                    514:             ELSE
                    515:                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
                    516:      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
                    517:             END IF
                    518: 
                    519: !        XXX: RES is no longer needed.
                    520:             CALL DCOPY( N, RES, 1, DY, 1 )
                    521:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
                    522: *
                    523: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    524: *
                    525:             NORMX = 0.0D+0
                    526:             NORMY = 0.0D+0
                    527:             NORMDX = 0.0D+0
                    528:             DZ_Z = 0.0D+0
                    529:             YMIN = HUGEVAL
                    530: *
                    531:             DO I = 1, N
                    532:                YK = ABS( Y( I, J ) )
                    533:                DYK = ABS( DY( I ) )
                    534: 
                    535:                IF ( YK .NE. 0.0D+0 ) THEN
                    536:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    537:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    538:                   DZ_Z = HUGEVAL
                    539:                END IF
                    540: 
                    541:                YMIN = MIN( YMIN, YK )
                    542: 
                    543:                NORMY = MAX( NORMY, YK )
                    544: 
                    545:                IF ( COLEQU ) THEN
                    546:                   NORMX = MAX( NORMX, YK * C( I ) )
                    547:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
                    548:                ELSE
                    549:                   NORMX = NORMY
                    550:                   NORMDX = MAX( NORMDX, DYK )
                    551:                END IF
                    552:             END DO
                    553: 
                    554:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    555:                DX_X = NORMDX / NORMX
                    556:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    557:                DX_X = 0.0D+0
                    558:             ELSE
                    559:                DX_X = HUGEVAL
                    560:             END IF
                    561: 
                    562:             DXRAT = NORMDX / PREVNORMDX
                    563:             DZRAT = DZ_Z / PREV_DZ_Z
                    564: *
                    565: *         Check termination criteria
                    566: *
                    567:             IF (.NOT.IGNORE_CWISE
                    568:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
                    569:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
                    570:      $           INCR_PREC = .TRUE.
                    571: 
                    572:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    573:      $           X_STATE = WORKING_STATE
                    574:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    575:                IF ( DX_X .LE. EPS ) THEN
                    576:                   X_STATE = CONV_STATE
                    577:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    578:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    579:                      INCR_PREC = .TRUE.
                    580:                   ELSE
                    581:                      X_STATE = NOPROG_STATE
                    582:                   END IF
                    583:                ELSE
                    584:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    585:                END IF
                    586:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    587:             END IF
                    588: 
                    589:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    590:      $           Z_STATE = WORKING_STATE
                    591:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    592:      $           Z_STATE = WORKING_STATE
                    593:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    594:                IF ( DZ_Z .LE. EPS ) THEN
                    595:                   Z_STATE = CONV_STATE
                    596:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    597:                   Z_STATE = UNSTABLE_STATE
                    598:                   DZRATMAX = 0.0D+0
                    599:                   FINAL_DZ_Z = HUGEVAL
                    600:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    601:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    602:                      INCR_PREC = .TRUE.
                    603:                   ELSE
                    604:                      Z_STATE = NOPROG_STATE
                    605:                   END IF
                    606:                ELSE
                    607:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    608:                END IF
                    609:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    610:             END IF
                    611: *
                    612: *           Exit if both normwise and componentwise stopped working,
                    613: *           but if componentwise is unstable, let it go at least two
                    614: *           iterations.
                    615: *
                    616:             IF ( X_STATE.NE.WORKING_STATE ) THEN
                    617:                IF ( IGNORE_CWISE) GOTO 666
                    618:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
                    619:      $              GOTO 666
                    620:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
                    621:             END IF
                    622: 
                    623:             IF ( INCR_PREC ) THEN
                    624:                INCR_PREC = .FALSE.
                    625:                Y_PREC_STATE = Y_PREC_STATE + 1
                    626:                DO I = 1, N
                    627:                   Y_TAIL( I ) = 0.0D+0
                    628:                END DO
                    629:             END IF
                    630: 
                    631:             PREVNORMDX = NORMDX
                    632:             PREV_DZ_Z = DZ_Z
                    633: *
                    634: *           Update soluton.
                    635: *
                    636:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
                    637:                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
                    638:             ELSE
                    639:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
                    640:             END IF
                    641: 
                    642:          END DO
                    643: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    644:  666     CONTINUE
                    645: *
                    646: *     Set final_* when cnt hits ithresh.
                    647: *
                    648:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    649:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    650: *
                    651: *     Compute error bounds
                    652: *
                    653:          IF (N_NORMS .GE. 1) THEN
                    654:             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
                    655:          END IF
                    656:          IF ( N_NORMS .GE. 2 ) THEN
                    657:             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
                    658:          END IF
                    659: *
                    660: *     Compute componentwise relative backward error from formula
                    661: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    662: *     where abs(Z) is the componentwise absolute value of the matrix
                    663: *     or vector Z.
                    664: *
                    665: *         Compute residual RES = B_s - op(A_s) * Y,
                    666: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
                    667: *
                    668:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
1.12    ! bertrand  669:          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0,
1.1       bertrand  670:      $     RES, 1 )
                    671: 
                    672:          DO I = 1, N
                    673:             AYB( I ) = ABS( B( I, J ) )
                    674:          END DO
                    675: *
                    676: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    677: *
                    678:          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
                    679:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    680: 
                    681:          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    682: *
                    683: *     End of loop for each RHS.
                    684: *
                    685:       END DO
                    686: *
                    687:       RETURN
                    688:       END

CVSweb interface <joel.bertrand@systella.fr>