Annotation of rpl/lapack/lapack/dla_gerfsx_extended.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
        !             2:      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
        !             3:      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
        !             4:      $                                ERRS_N, ERRS_C, RES, AYB, DY,
        !             5:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
        !             6:      $                                DZ_UB, IGNORE_CWISE, INFO )
        !             7: *
        !             8: *     -- LAPACK routine (version 3.2.1)                                 --
        !             9: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
        !            10: *     -- Jason Riedy of Univ. of California Berkeley.                 --
        !            11: *     -- April 2009                                                   --
        !            12: *
        !            13: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
        !            14: *     -- Univ. of California Berkeley and NAG Ltd.                    --
        !            15: *
        !            16:       IMPLICIT NONE
        !            17: *     ..
        !            18: *     .. Scalar Arguments ..
        !            19:       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
        !            20:      $                   TRANS_TYPE, N_NORMS, ITHRESH
        !            21:       LOGICAL            COLEQU, IGNORE_CWISE
        !            22:       DOUBLE PRECISION   RTHRESH, DZ_UB
        !            23: *     ..
        !            24: *     .. Array Arguments ..
        !            25:       INTEGER            IPIV( * )
        !            26:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
        !            27:      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
        !            28:       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
        !            29:      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
        !            30: *     ..
        !            31: *
        !            32: *  Purpose
        !            33: *  =======
        !            34: * 
        !            35: *  DLA_GERFSX_EXTENDED improves the computed solution to a system of
        !            36: *  linear equations by performing extra-precise iterative refinement
        !            37: *  and provides error bounds and backward error estimates for the solution.
        !            38: *  This subroutine is called by DGERFSX to perform iterative refinement.
        !            39: *  In addition to normwise error bound, the code provides maximum
        !            40: *  componentwise error bound if possible. See comments for ERR_BNDS_NORM
        !            41: *  and ERR_BNDS_COMP for details of the error bounds. Note that this
        !            42: *  subroutine is only resonsible for setting the second fields of
        !            43: *  ERR_BNDS_NORM and ERR_BNDS_COMP.
        !            44: *
        !            45: *  Arguments
        !            46: *  =========
        !            47: *
        !            48: *     PREC_TYPE      (input) INTEGER
        !            49: *     Specifies the intermediate precision to be used in refinement.
        !            50: *     The value is defined by ILAPREC(P) where P is a CHARACTER and
        !            51: *     P    = 'S':  Single
        !            52: *          = 'D':  Double
        !            53: *          = 'I':  Indigenous
        !            54: *          = 'X', 'E':  Extra
        !            55: *
        !            56: *     TRANS_TYPE     (input) INTEGER
        !            57: *     Specifies the transposition operation on A.
        !            58: *     The value is defined by ILATRANS(T) where T is a CHARACTER and
        !            59: *     T    = 'N':  No transpose
        !            60: *          = 'T':  Transpose
        !            61: *          = 'C':  Conjugate transpose
        !            62: *
        !            63: *     N              (input) INTEGER
        !            64: *     The number of linear equations, i.e., the order of the
        !            65: *     matrix A.  N >= 0.
        !            66: *
        !            67: *     NRHS           (input) INTEGER
        !            68: *     The number of right-hand-sides, i.e., the number of columns of the
        !            69: *     matrix B.
        !            70: *
        !            71: *     A              (input) DOUBLE PRECISION array, dimension (LDA,N)
        !            72: *     On entry, the N-by-N matrix A.
        !            73: *
        !            74: *     LDA            (input) INTEGER
        !            75: *     The leading dimension of the array A.  LDA >= max(1,N).
        !            76: *
        !            77: *     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N)
        !            78: *     The factors L and U from the factorization
        !            79: *     A = P*L*U as computed by DGETRF.
        !            80: *
        !            81: *     LDAF           (input) INTEGER
        !            82: *     The leading dimension of the array AF.  LDAF >= max(1,N).
        !            83: *
        !            84: *     IPIV           (input) INTEGER array, dimension (N)
        !            85: *     The pivot indices from the factorization A = P*L*U
        !            86: *     as computed by DGETRF; row i of the matrix was interchanged
        !            87: *     with row IPIV(i).
        !            88: *
        !            89: *     COLEQU         (input) LOGICAL
        !            90: *     If .TRUE. then column equilibration was done to A before calling
        !            91: *     this routine. This is needed to compute the solution and error
        !            92: *     bounds correctly.
        !            93: *
        !            94: *     C              (input) DOUBLE PRECISION  array, dimension (N)
        !            95: *     The column scale factors for A. If COLEQU = .FALSE., C
        !            96: *     is not accessed. If C is input, each element of C should be a power
        !            97: *     of the radix to ensure a reliable solution and error estimates.
        !            98: *     Scaling by powers of the radix does not cause rounding errors unless
        !            99: *     the result underflows or overflows. Rounding errors during scaling
        !           100: *     lead to refining with a matrix that is not equivalent to the
        !           101: *     input matrix, producing error estimates that may not be
        !           102: *     reliable.
        !           103: *
        !           104: *     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           105: *     The right-hand-side matrix B.
        !           106: *
        !           107: *     LDB            (input) INTEGER
        !           108: *     The leading dimension of the array B.  LDB >= max(1,N).
        !           109: *
        !           110: *     Y              (input/output) DOUBLE PRECISION array, dimension
        !           111: *                    (LDY,NRHS)
        !           112: *     On entry, the solution matrix X, as computed by DGETRS.
        !           113: *     On exit, the improved solution matrix Y.
        !           114: *
        !           115: *     LDY            (input) INTEGER
        !           116: *     The leading dimension of the array Y.  LDY >= max(1,N).
        !           117: *
        !           118: *     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS)
        !           119: *     On exit, BERR_OUT(j) contains the componentwise relative backward
        !           120: *     error for right-hand-side j from the formula
        !           121: *         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
        !           122: *     where abs(Z) is the componentwise absolute value of the matrix
        !           123: *     or vector Z. This is computed by DLA_LIN_BERR.
        !           124: *
        !           125: *     N_NORMS        (input) INTEGER
        !           126: *     Determines which error bounds to return (see ERR_BNDS_NORM
        !           127: *     and ERR_BNDS_COMP).
        !           128: *     If N_NORMS >= 1 return normwise error bounds.
        !           129: *     If N_NORMS >= 2 return componentwise error bounds.
        !           130: *
        !           131: *     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension
        !           132: *                    (NRHS, N_ERR_BNDS)
        !           133: *     For each right-hand side, this array contains information about
        !           134: *     various error bounds and condition numbers corresponding to the
        !           135: *     normwise relative error, which is defined as follows:
        !           136: *
        !           137: *     Normwise relative error in the ith solution vector:
        !           138: *             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           139: *            ------------------------------
        !           140: *                  max_j abs(X(j,i))
        !           141: *
        !           142: *     The array is indexed by the type of error information as described
        !           143: *     below. There currently are up to three pieces of information
        !           144: *     returned.
        !           145: *
        !           146: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           147: *     right-hand side.
        !           148: *
        !           149: *     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           150: *     three fields:
        !           151: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           152: *              reciprocal condition number is less than the threshold
        !           153: *              sqrt(n) * slamch('Epsilon').
        !           154: *
        !           155: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           156: *              almost certainly within a factor of 10 of the true error
        !           157: *              so long as the next entry is greater than the threshold
        !           158: *              sqrt(n) * slamch('Epsilon'). This error bound should only
        !           159: *              be trusted if the previous boolean is true.
        !           160: *
        !           161: *     err = 3  Reciprocal condition number: Estimated normwise
        !           162: *              reciprocal condition number.  Compared with the threshold
        !           163: *              sqrt(n) * slamch('Epsilon') to determine if the error
        !           164: *              estimate is "guaranteed". These reciprocal condition
        !           165: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           166: *              appropriately scaled matrix Z.
        !           167: *              Let Z = S*A, where S scales each row by a power of the
        !           168: *              radix so all absolute row sums of Z are approximately 1.
        !           169: *
        !           170: *     This subroutine is only responsible for setting the second field
        !           171: *     above.
        !           172: *     See Lapack Working Note 165 for further details and extra
        !           173: *     cautions.
        !           174: *
        !           175: *     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension
        !           176: *                    (NRHS, N_ERR_BNDS)
        !           177: *     For each right-hand side, this array contains information about
        !           178: *     various error bounds and condition numbers corresponding to the
        !           179: *     componentwise relative error, which is defined as follows:
        !           180: *
        !           181: *     Componentwise relative error in the ith solution vector:
        !           182: *                    abs(XTRUE(j,i) - X(j,i))
        !           183: *             max_j ----------------------
        !           184: *                         abs(X(j,i))
        !           185: *
        !           186: *     The array is indexed by the right-hand side i (on which the
        !           187: *     componentwise relative error depends), and the type of error
        !           188: *     information as described below. There currently are up to three
        !           189: *     pieces of information returned for each right-hand side. If
        !           190: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           191: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           192: *     the first (:,N_ERR_BNDS) entries are returned.
        !           193: *
        !           194: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           195: *     right-hand side.
        !           196: *
        !           197: *     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           198: *     three fields:
        !           199: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           200: *              reciprocal condition number is less than the threshold
        !           201: *              sqrt(n) * slamch('Epsilon').
        !           202: *
        !           203: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           204: *              almost certainly within a factor of 10 of the true error
        !           205: *              so long as the next entry is greater than the threshold
        !           206: *              sqrt(n) * slamch('Epsilon'). This error bound should only
        !           207: *              be trusted if the previous boolean is true.
        !           208: *
        !           209: *     err = 3  Reciprocal condition number: Estimated componentwise
        !           210: *              reciprocal condition number.  Compared with the threshold
        !           211: *              sqrt(n) * slamch('Epsilon') to determine if the error
        !           212: *              estimate is "guaranteed". These reciprocal condition
        !           213: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           214: *              appropriately scaled matrix Z.
        !           215: *              Let Z = S*(A*diag(x)), where x is the solution for the
        !           216: *              current right-hand side and S scales each row of
        !           217: *              A*diag(x) by a power of the radix so all absolute row
        !           218: *              sums of Z are approximately 1.
        !           219: *
        !           220: *     This subroutine is only responsible for setting the second field
        !           221: *     above.
        !           222: *     See Lapack Working Note 165 for further details and extra
        !           223: *     cautions.
        !           224: *
        !           225: *     RES            (input) DOUBLE PRECISION array, dimension (N)
        !           226: *     Workspace to hold the intermediate residual.
        !           227: *
        !           228: *     AYB            (input) DOUBLE PRECISION array, dimension (N)
        !           229: *     Workspace. This can be the same workspace passed for Y_TAIL.
        !           230: *
        !           231: *     DY             (input) DOUBLE PRECISION array, dimension (N)
        !           232: *     Workspace to hold the intermediate solution.
        !           233: *
        !           234: *     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N)
        !           235: *     Workspace to hold the trailing bits of the intermediate solution.
        !           236: *
        !           237: *     RCOND          (input) DOUBLE PRECISION
        !           238: *     Reciprocal scaled condition number.  This is an estimate of the
        !           239: *     reciprocal Skeel condition number of the matrix A after
        !           240: *     equilibration (if done).  If this is less than the machine
        !           241: *     precision (in particular, if it is zero), the matrix is singular
        !           242: *     to working precision.  Note that the error may still be small even
        !           243: *     if this number is very small and the matrix appears ill-
        !           244: *     conditioned.
        !           245: *
        !           246: *     ITHRESH        (input) INTEGER
        !           247: *     The maximum number of residual computations allowed for
        !           248: *     refinement. The default is 10. For 'aggressive' set to 100 to
        !           249: *     permit convergence using approximate factorizations or
        !           250: *     factorizations other than LU. If the factorization uses a
        !           251: *     technique other than Gaussian elimination, the guarantees in
        !           252: *     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
        !           253: *
        !           254: *     RTHRESH        (input) DOUBLE PRECISION
        !           255: *     Determines when to stop refinement if the error estimate stops
        !           256: *     decreasing. Refinement will stop when the next solution no longer
        !           257: *     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
        !           258: *     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
        !           259: *     default value is 0.5. For 'aggressive' set to 0.9 to permit
        !           260: *     convergence on extremely ill-conditioned matrices. See LAWN 165
        !           261: *     for more details.
        !           262: *
        !           263: *     DZ_UB          (input) DOUBLE PRECISION
        !           264: *     Determines when to start considering componentwise convergence.
        !           265: *     Componentwise convergence is only considered after each component
        !           266: *     of the solution Y is stable, which we definte as the relative
        !           267: *     change in each component being less than DZ_UB. The default value
        !           268: *     is 0.25, requiring the first bit to be stable. See LAWN 165 for
        !           269: *     more details.
        !           270: *
        !           271: *     IGNORE_CWISE   (input) LOGICAL
        !           272: *     If .TRUE. then ignore componentwise convergence. Default value
        !           273: *     is .FALSE..
        !           274: *
        !           275: *     INFO           (output) INTEGER
        !           276: *       = 0:  Successful exit.
        !           277: *       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
        !           278: *             value
        !           279: *
        !           280: *  =====================================================================
        !           281: *
        !           282: *     .. Local Scalars ..
        !           283:       CHARACTER          TRANS
        !           284:       INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
        !           285:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
        !           286:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
        !           287:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
        !           288:      $                   EPS, HUGEVAL, INCR_THRESH
        !           289:       LOGICAL            INCR_PREC
        !           290: *     ..
        !           291: *     .. Parameters ..
        !           292:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
        !           293:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
        !           294:      $                   EXTRA_Y
        !           295:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
        !           296:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
        !           297:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
        !           298:      $                   EXTRA_Y = 2 )
        !           299:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
        !           300:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
        !           301:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
        !           302:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
        !           303:      $                   BERR_I = 3 )
        !           304:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
        !           305:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
        !           306:      $                   PIV_GROWTH_I = 9 )
        !           307:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
        !           308:      $                   LA_LINRX_CWISE_I
        !           309:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
        !           310:      $                   LA_LINRX_ITHRESH_I = 2 )
        !           311:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
        !           312:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
        !           313:      $                   LA_LINRX_RCOND_I
        !           314:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
        !           315:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
        !           316: *     ..
        !           317: *     .. External Subroutines ..
        !           318:       EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV, BLAS_DGEMV_X,
        !           319:      $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
        !           320:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
        !           321:       DOUBLE PRECISION   DLAMCH
        !           322:       CHARACTER          CHLA_TRANSTYPE
        !           323: *     ..
        !           324: *     .. Intrinsic Functions ..
        !           325:       INTRINSIC          ABS, MAX, MIN
        !           326: *     ..
        !           327: *     .. Executable Statements ..
        !           328: *
        !           329:       IF ( INFO.NE.0 ) RETURN
        !           330:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
        !           331:       EPS = DLAMCH( 'Epsilon' )
        !           332:       HUGEVAL = DLAMCH( 'Overflow' )
        !           333: *     Force HUGEVAL to Inf
        !           334:       HUGEVAL = HUGEVAL * HUGEVAL
        !           335: *     Using HUGEVAL may lead to spurious underflows.
        !           336:       INCR_THRESH = DBLE( N ) * EPS
        !           337: *
        !           338:       DO J = 1, NRHS
        !           339:          Y_PREC_STATE = EXTRA_RESIDUAL
        !           340:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
        !           341:             DO I = 1, N
        !           342:                Y_TAIL( I ) = 0.0D+0
        !           343:             END DO
        !           344:          END IF
        !           345: 
        !           346:          DXRAT = 0.0D+0
        !           347:          DXRATMAX = 0.0D+0
        !           348:          DZRAT = 0.0D+0
        !           349:          DZRATMAX = 0.0D+0
        !           350:          FINAL_DX_X = HUGEVAL
        !           351:          FINAL_DZ_Z = HUGEVAL
        !           352:          PREVNORMDX = HUGEVAL
        !           353:          PREV_DZ_Z = HUGEVAL
        !           354:          DZ_Z = HUGEVAL
        !           355:          DX_X = HUGEVAL
        !           356: 
        !           357:          X_STATE = WORKING_STATE
        !           358:          Z_STATE = UNSTABLE_STATE
        !           359:          INCR_PREC = .FALSE.
        !           360: 
        !           361:          DO CNT = 1, ITHRESH
        !           362: *
        !           363: *         Compute residual RES = B_s - op(A_s) * Y,
        !           364: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
        !           365: *
        !           366:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
        !           367:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
        !           368:                CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ), 1,
        !           369:      $              1.0D+0, RES, 1 )
        !           370:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
        !           371:                CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
        !           372:      $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
        !           373:             ELSE
        !           374:                CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
        !           375:      $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
        !           376:             END IF
        !           377: 
        !           378: !        XXX: RES is no longer needed.
        !           379:             CALL DCOPY( N, RES, 1, DY, 1 )
        !           380:             CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
        !           381: *
        !           382: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
        !           383: *
        !           384:             NORMX = 0.0D+0
        !           385:             NORMY = 0.0D+0
        !           386:             NORMDX = 0.0D+0
        !           387:             DZ_Z = 0.0D+0
        !           388:             YMIN = HUGEVAL
        !           389: *
        !           390:             DO I = 1, N
        !           391:                YK = ABS( Y( I, J ) )
        !           392:                DYK = ABS( DY( I ) )
        !           393: 
        !           394:                IF ( YK .NE. 0.0D+0 ) THEN
        !           395:                   DZ_Z = MAX( DZ_Z, DYK / YK )
        !           396:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
        !           397:                   DZ_Z = HUGEVAL
        !           398:                END IF
        !           399: 
        !           400:                YMIN = MIN( YMIN, YK )
        !           401: 
        !           402:                NORMY = MAX( NORMY, YK )
        !           403: 
        !           404:                IF ( COLEQU ) THEN
        !           405:                   NORMX = MAX( NORMX, YK * C( I ) )
        !           406:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
        !           407:                ELSE
        !           408:                   NORMX = NORMY
        !           409:                   NORMDX = MAX( NORMDX, DYK )
        !           410:                END IF
        !           411:             END DO
        !           412: 
        !           413:             IF ( NORMX .NE. 0.0D+0 ) THEN
        !           414:                DX_X = NORMDX / NORMX
        !           415:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
        !           416:                DX_X = 0.0D+0
        !           417:             ELSE
        !           418:                DX_X = HUGEVAL
        !           419:             END IF
        !           420: 
        !           421:             DXRAT = NORMDX / PREVNORMDX
        !           422:             DZRAT = DZ_Z / PREV_DZ_Z
        !           423: *
        !           424: *         Check termination criteria
        !           425: *
        !           426:             IF (.NOT.IGNORE_CWISE
        !           427:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
        !           428:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
        !           429:      $           INCR_PREC = .TRUE.
        !           430: 
        !           431:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
        !           432:      $           X_STATE = WORKING_STATE
        !           433:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
        !           434:                IF ( DX_X .LE. EPS ) THEN
        !           435:                   X_STATE = CONV_STATE
        !           436:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
        !           437:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
        !           438:                      INCR_PREC = .TRUE.
        !           439:                   ELSE
        !           440:                      X_STATE = NOPROG_STATE
        !           441:                   END IF
        !           442:                ELSE
        !           443:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
        !           444:                END IF
        !           445:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
        !           446:             END IF
        !           447: 
        !           448:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
        !           449:      $           Z_STATE = WORKING_STATE
        !           450:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
        !           451:      $           Z_STATE = WORKING_STATE
        !           452:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
        !           453:                IF ( DZ_Z .LE. EPS ) THEN
        !           454:                   Z_STATE = CONV_STATE
        !           455:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
        !           456:                   Z_STATE = UNSTABLE_STATE
        !           457:                   DZRATMAX = 0.0D+0
        !           458:                   FINAL_DZ_Z = HUGEVAL
        !           459:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
        !           460:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
        !           461:                      INCR_PREC = .TRUE.
        !           462:                   ELSE
        !           463:                      Z_STATE = NOPROG_STATE
        !           464:                   END IF
        !           465:                ELSE
        !           466:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
        !           467:                END IF
        !           468:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
        !           469:             END IF
        !           470: *
        !           471: *           Exit if both normwise and componentwise stopped working,
        !           472: *           but if componentwise is unstable, let it go at least two
        !           473: *           iterations.
        !           474: *
        !           475:             IF ( X_STATE.NE.WORKING_STATE ) THEN
        !           476:                IF ( IGNORE_CWISE) GOTO 666
        !           477:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
        !           478:      $              GOTO 666
        !           479:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
        !           480:             END IF
        !           481: 
        !           482:             IF ( INCR_PREC ) THEN
        !           483:                INCR_PREC = .FALSE.
        !           484:                Y_PREC_STATE = Y_PREC_STATE + 1
        !           485:                DO I = 1, N
        !           486:                   Y_TAIL( I ) = 0.0D+0
        !           487:                END DO
        !           488:             END IF
        !           489: 
        !           490:             PREVNORMDX = NORMDX
        !           491:             PREV_DZ_Z = DZ_Z
        !           492: *
        !           493: *           Update soluton.
        !           494: *
        !           495:             IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
        !           496:                CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
        !           497:             ELSE
        !           498:                CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
        !           499:             END IF
        !           500: 
        !           501:          END DO
        !           502: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
        !           503:  666     CONTINUE
        !           504: *
        !           505: *     Set final_* when cnt hits ithresh.
        !           506: *
        !           507:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
        !           508:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
        !           509: *
        !           510: *     Compute error bounds
        !           511: *
        !           512:          IF (N_NORMS .GE. 1) THEN
        !           513:             ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
        !           514:          END IF
        !           515:          IF ( N_NORMS .GE. 2 ) THEN
        !           516:             ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
        !           517:          END IF
        !           518: *
        !           519: *     Compute componentwise relative backward error from formula
        !           520: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
        !           521: *     where abs(Z) is the componentwise absolute value of the matrix
        !           522: *     or vector Z.
        !           523: *
        !           524: *         Compute residual RES = B_s - op(A_s) * Y,
        !           525: *             op(A) = A, A**T, or A**H depending on TRANS (and type).
        !           526: *
        !           527:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
        !           528:          CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0, 
        !           529:      $     RES, 1 )
        !           530: 
        !           531:          DO I = 1, N
        !           532:             AYB( I ) = ABS( B( I, J ) )
        !           533:          END DO
        !           534: *
        !           535: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
        !           536: *
        !           537:          CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
        !           538:      $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
        !           539: 
        !           540:          CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
        !           541: *
        !           542: *     End of loop for each RHS.
        !           543: *
        !           544:       END DO
        !           545: *
        !           546:       RETURN
        !           547:       END

CVSweb interface <joel.bertrand@systella.fr>