Diff for /rpl/lapack/lapack/dla_gerfsx_extended.f between versions 1.4 and 1.5

version 1.4, 2010/12/21 13:53:28 version 1.5, 2011/11/21 20:42:53
Line 1 Line 1
   *> \brief \b DLA_GERFSX_EXTENDED
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at 
   *            http://www.netlib.org/lapack/explore-html/ 
   *
   *> \htmlonly
   *> Download DLA_GERFSX_EXTENDED + dependencies 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
   *> [TGZ]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
   *> [ZIP]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerfsx_extended.f"> 
   *> [TXT]</a>
   *> \endhtmlonly 
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
   *                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
   *                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
   *                                       ERRS_N, ERRS_C, RES, AYB, DY,
   *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
   *                                       DZ_UB, IGNORE_CWISE, INFO )
   * 
   *       .. Scalar Arguments ..
   *       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
   *      $                   TRANS_TYPE, N_NORMS, ITHRESH
   *       LOGICAL            COLEQU, IGNORE_CWISE
   *       DOUBLE PRECISION   RTHRESH, DZ_UB
   *       ..
   *       .. Array Arguments ..
   *       INTEGER            IPIV( * )
   *       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
   *      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
   *       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
   *      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
   *       ..
   *  
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> 
   *> DLA_GERFSX_EXTENDED improves the computed solution to a system of
   *> linear equations by performing extra-precise iterative refinement
   *> and provides error bounds and backward error estimates for the solution.
   *> This subroutine is called by DGERFSX to perform iterative refinement.
   *> In addition to normwise error bound, the code provides maximum
   *> componentwise error bound if possible. See comments for ERRS_N
   *> and ERRS_C for details of the error bounds. Note that this
   *> subroutine is only resonsible for setting the second fields of
   *> ERRS_N and ERRS_C.
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] PREC_TYPE
   *> \verbatim
   *>          PREC_TYPE is INTEGER
   *>     Specifies the intermediate precision to be used in refinement.
   *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
   *>     P    = 'S':  Single
   *>          = 'D':  Double
   *>          = 'I':  Indigenous
   *>          = 'X', 'E':  Extra
   *> \endverbatim
   *>
   *> \param[in] TRANS_TYPE
   *> \verbatim
   *>          TRANS_TYPE is INTEGER
   *>     Specifies the transposition operation on A.
   *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
   *>     T    = 'N':  No transpose
   *>          = 'T':  Transpose
   *>          = 'C':  Conjugate transpose
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>     The number of linear equations, i.e., the order of the
   *>     matrix A.  N >= 0.
   *> \endverbatim
   *>
   *> \param[in] NRHS
   *> \verbatim
   *>          NRHS is INTEGER
   *>     The number of right-hand-sides, i.e., the number of columns of the
   *>     matrix B.
   *> \endverbatim
   *>
   *> \param[in] A
   *> \verbatim
   *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   *>     On entry, the N-by-N matrix A.
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>     The leading dimension of the array A.  LDA >= max(1,N).
   *> \endverbatim
   *>
   *> \param[in] AF
   *> \verbatim
   *>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
   *>     The factors L and U from the factorization
   *>     A = P*L*U as computed by DGETRF.
   *> \endverbatim
   *>
   *> \param[in] LDAF
   *> \verbatim
   *>          LDAF is INTEGER
   *>     The leading dimension of the array AF.  LDAF >= max(1,N).
   *> \endverbatim
   *>
   *> \param[in] IPIV
   *> \verbatim
   *>          IPIV is INTEGER array, dimension (N)
   *>     The pivot indices from the factorization A = P*L*U
   *>     as computed by DGETRF; row i of the matrix was interchanged
   *>     with row IPIV(i).
   *> \endverbatim
   *>
   *> \param[in] COLEQU
   *> \verbatim
   *>          COLEQU is LOGICAL
   *>     If .TRUE. then column equilibration was done to A before calling
   *>     this routine. This is needed to compute the solution and error
   *>     bounds correctly.
   *> \endverbatim
   *>
   *> \param[in] C
   *> \verbatim
   *>          C is DOUBLE PRECISION array, dimension (N)
   *>     The column scale factors for A. If COLEQU = .FALSE., C
   *>     is not accessed. If C is input, each element of C should be a power
   *>     of the radix to ensure a reliable solution and error estimates.
   *>     Scaling by powers of the radix does not cause rounding errors unless
   *>     the result underflows or overflows. Rounding errors during scaling
   *>     lead to refining with a matrix that is not equivalent to the
   *>     input matrix, producing error estimates that may not be
   *>     reliable.
   *> \endverbatim
   *>
   *> \param[in] B
   *> \verbatim
   *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   *>     The right-hand-side matrix B.
   *> \endverbatim
   *>
   *> \param[in] LDB
   *> \verbatim
   *>          LDB is INTEGER
   *>     The leading dimension of the array B.  LDB >= max(1,N).
   *> \endverbatim
   *>
   *> \param[in,out] Y
   *> \verbatim
   *>          Y is DOUBLE PRECISION array, dimension
   *>                    (LDY,NRHS)
   *>     On entry, the solution matrix X, as computed by DGETRS.
   *>     On exit, the improved solution matrix Y.
   *> \endverbatim
   *>
   *> \param[in] LDY
   *> \verbatim
   *>          LDY is INTEGER
   *>     The leading dimension of the array Y.  LDY >= max(1,N).
   *> \endverbatim
   *>
   *> \param[out] BERR_OUT
   *> \verbatim
   *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
   *>     On exit, BERR_OUT(j) contains the componentwise relative backward
   *>     error for right-hand-side j from the formula
   *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
   *>     where abs(Z) is the componentwise absolute value of the matrix
   *>     or vector Z. This is computed by DLA_LIN_BERR.
   *> \endverbatim
   *>
   *> \param[in] N_NORMS
   *> \verbatim
   *>          N_NORMS is INTEGER
   *>     Determines which error bounds to return (see ERRS_N
   *>     and ERRS_C).
   *>     If N_NORMS >= 1 return normwise error bounds.
   *>     If N_NORMS >= 2 return componentwise error bounds.
   *> \endverbatim
   *>
   *> \param[in,out] ERRS_N
   *> \verbatim
   *>          ERRS_N is DOUBLE PRECISION array, dimension
   *>                    (NRHS, N_ERR_BNDS)
   *>     For each right-hand side, this array contains information about
   *>     various error bounds and condition numbers corresponding to the
   *>     normwise relative error, which is defined as follows:
   *>
   *>     Normwise relative error in the ith solution vector:
   *>             max_j (abs(XTRUE(j,i) - X(j,i)))
   *>            ------------------------------
   *>                  max_j abs(X(j,i))
   *>
   *>     The array is indexed by the type of error information as described
   *>     below. There currently are up to three pieces of information
   *>     returned.
   *>
   *>     The first index in ERRS_N(i,:) corresponds to the ith
   *>     right-hand side.
   *>
   *>     The second index in ERRS_N(:,err) contains the following
   *>     three fields:
   *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
   *>              reciprocal condition number is less than the threshold
   *>              sqrt(n) * slamch('Epsilon').
   *>
   *>     err = 2 "Guaranteed" error bound: The estimated forward error,
   *>              almost certainly within a factor of 10 of the true error
   *>              so long as the next entry is greater than the threshold
   *>              sqrt(n) * slamch('Epsilon'). This error bound should only
   *>              be trusted if the previous boolean is true.
   *>
   *>     err = 3  Reciprocal condition number: Estimated normwise
   *>              reciprocal condition number.  Compared with the threshold
   *>              sqrt(n) * slamch('Epsilon') to determine if the error
   *>              estimate is "guaranteed". These reciprocal condition
   *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
   *>              appropriately scaled matrix Z.
   *>              Let Z = S*A, where S scales each row by a power of the
   *>              radix so all absolute row sums of Z are approximately 1.
   *>
   *>     This subroutine is only responsible for setting the second field
   *>     above.
   *>     See Lapack Working Note 165 for further details and extra
   *>     cautions.
   *> \endverbatim
   *>
   *> \param[in,out] ERRS_C
   *> \verbatim
   *>          ERRS_C is DOUBLE PRECISION array, dimension
   *>                    (NRHS, N_ERR_BNDS)
   *>     For each right-hand side, this array contains information about
   *>     various error bounds and condition numbers corresponding to the
   *>     componentwise relative error, which is defined as follows:
   *>
   *>     Componentwise relative error in the ith solution vector:
   *>                    abs(XTRUE(j,i) - X(j,i))
   *>             max_j ----------------------
   *>                         abs(X(j,i))
   *>
   *>     The array is indexed by the right-hand side i (on which the
   *>     componentwise relative error depends), and the type of error
   *>     information as described below. There currently are up to three
   *>     pieces of information returned for each right-hand side. If
   *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
   *>     ERRS_C is not accessed.  If N_ERR_BNDS .LT. 3, then at most
   *>     the first (:,N_ERR_BNDS) entries are returned.
   *>
   *>     The first index in ERRS_C(i,:) corresponds to the ith
   *>     right-hand side.
   *>
   *>     The second index in ERRS_C(:,err) contains the following
   *>     three fields:
   *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
   *>              reciprocal condition number is less than the threshold
   *>              sqrt(n) * slamch('Epsilon').
   *>
   *>     err = 2 "Guaranteed" error bound: The estimated forward error,
   *>              almost certainly within a factor of 10 of the true error
   *>              so long as the next entry is greater than the threshold
   *>              sqrt(n) * slamch('Epsilon'). This error bound should only
   *>              be trusted if the previous boolean is true.
   *>
   *>     err = 3  Reciprocal condition number: Estimated componentwise
   *>              reciprocal condition number.  Compared with the threshold
   *>              sqrt(n) * slamch('Epsilon') to determine if the error
   *>              estimate is "guaranteed". These reciprocal condition
   *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
   *>              appropriately scaled matrix Z.
   *>              Let Z = S*(A*diag(x)), where x is the solution for the
   *>              current right-hand side and S scales each row of
   *>              A*diag(x) by a power of the radix so all absolute row
   *>              sums of Z are approximately 1.
   *>
   *>     This subroutine is only responsible for setting the second field
   *>     above.
   *>     See Lapack Working Note 165 for further details and extra
   *>     cautions.
   *> \endverbatim
   *>
   *> \param[in] RES
   *> \verbatim
   *>          RES is DOUBLE PRECISION array, dimension (N)
   *>     Workspace to hold the intermediate residual.
   *> \endverbatim
   *>
   *> \param[in] AYB
   *> \verbatim
   *>          AYB is DOUBLE PRECISION array, dimension (N)
   *>     Workspace. This can be the same workspace passed for Y_TAIL.
   *> \endverbatim
   *>
   *> \param[in] DY
   *> \verbatim
   *>          DY is DOUBLE PRECISION array, dimension (N)
   *>     Workspace to hold the intermediate solution.
   *> \endverbatim
   *>
   *> \param[in] Y_TAIL
   *> \verbatim
   *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
   *>     Workspace to hold the trailing bits of the intermediate solution.
   *> \endverbatim
   *>
   *> \param[in] RCOND
   *> \verbatim
   *>          RCOND is DOUBLE PRECISION
   *>     Reciprocal scaled condition number.  This is an estimate of the
   *>     reciprocal Skeel condition number of the matrix A after
   *>     equilibration (if done).  If this is less than the machine
   *>     precision (in particular, if it is zero), the matrix is singular
   *>     to working precision.  Note that the error may still be small even
   *>     if this number is very small and the matrix appears ill-
   *>     conditioned.
   *> \endverbatim
   *>
   *> \param[in] ITHRESH
   *> \verbatim
   *>          ITHRESH is INTEGER
   *>     The maximum number of residual computations allowed for
   *>     refinement. The default is 10. For 'aggressive' set to 100 to
   *>     permit convergence using approximate factorizations or
   *>     factorizations other than LU. If the factorization uses a
   *>     technique other than Gaussian elimination, the guarantees in
   *>     ERRS_N and ERRS_C may no longer be trustworthy.
   *> \endverbatim
   *>
   *> \param[in] RTHRESH
   *> \verbatim
   *>          RTHRESH is DOUBLE PRECISION
   *>     Determines when to stop refinement if the error estimate stops
   *>     decreasing. Refinement will stop when the next solution no longer
   *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
   *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
   *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
   *>     convergence on extremely ill-conditioned matrices. See LAWN 165
   *>     for more details.
   *> \endverbatim
   *>
   *> \param[in] DZ_UB
   *> \verbatim
   *>          DZ_UB is DOUBLE PRECISION
   *>     Determines when to start considering componentwise convergence.
   *>     Componentwise convergence is only considered after each component
   *>     of the solution Y is stable, which we definte as the relative
   *>     change in each component being less than DZ_UB. The default value
   *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
   *>     more details.
   *> \endverbatim
   *>
   *> \param[in] IGNORE_CWISE
   *> \verbatim
   *>          IGNORE_CWISE is LOGICAL
   *>     If .TRUE. then ignore componentwise convergence. Default value
   *>     is .FALSE..
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>       = 0:  Successful exit.
   *>       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
   *>             value
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee 
   *> \author Univ. of California Berkeley 
   *> \author Univ. of Colorado Denver 
   *> \author NAG Ltd. 
   *
   *> \date November 2011
   *
   *> \ingroup doubleGEcomputational
   *
   *  =====================================================================
       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,        SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
      $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,       $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
      $                                LDB, Y, LDY, BERR_OUT, N_NORMS,       $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
Line 5 Line 399
      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,       $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
      $                                DZ_UB, IGNORE_CWISE, INFO )       $                                DZ_UB, IGNORE_CWISE, INFO )
 *  *
 *     -- LAPACK routine (version 3.2.1)                                 --  *  -- LAPACK computational routine (version 3.4.0) --
 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *     -- Jason Riedy of Univ. of California Berkeley.                 --  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *     -- April 2009                                                   --  *     November 2011
 *  
 *     -- LAPACK is a software package provided by Univ. of Tennessee, --  
 *     -- Univ. of California Berkeley and NAG Ltd.                    --  
 *  *
       IMPLICIT NONE  
 *     ..  
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,        INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
      $                   TRANS_TYPE, N_NORMS, ITHRESH       $                   TRANS_TYPE, N_NORMS, ITHRESH
Line 29 Line 418
      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )       $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *   
 *  DLA_GERFSX_EXTENDED improves the computed solution to a system of  
 *  linear equations by performing extra-precise iterative refinement  
 *  and provides error bounds and backward error estimates for the solution.  
 *  This subroutine is called by DGERFSX to perform iterative refinement.  
 *  In addition to normwise error bound, the code provides maximum  
 *  componentwise error bound if possible. See comments for ERR_BNDS_NORM  
 *  and ERR_BNDS_COMP for details of the error bounds. Note that this  
 *  subroutine is only resonsible for setting the second fields of  
 *  ERR_BNDS_NORM and ERR_BNDS_COMP.  
 *  
 *  Arguments  
 *  =========  
 *  
 *     PREC_TYPE      (input) INTEGER  
 *     Specifies the intermediate precision to be used in refinement.  
 *     The value is defined by ILAPREC(P) where P is a CHARACTER and  
 *     P    = 'S':  Single  
 *          = 'D':  Double  
 *          = 'I':  Indigenous  
 *          = 'X', 'E':  Extra  
 *  
 *     TRANS_TYPE     (input) INTEGER  
 *     Specifies the transposition operation on A.  
 *     The value is defined by ILATRANS(T) where T is a CHARACTER and  
 *     T    = 'N':  No transpose  
 *          = 'T':  Transpose  
 *          = 'C':  Conjugate transpose  
 *  
 *     N              (input) INTEGER  
 *     The number of linear equations, i.e., the order of the  
 *     matrix A.  N >= 0.  
 *  
 *     NRHS           (input) INTEGER  
 *     The number of right-hand-sides, i.e., the number of columns of the  
 *     matrix B.  
 *  
 *     A              (input) DOUBLE PRECISION array, dimension (LDA,N)  
 *     On entry, the N-by-N matrix A.  
 *  
 *     LDA            (input) INTEGER  
 *     The leading dimension of the array A.  LDA >= max(1,N).  
 *  
 *     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N)  
 *     The factors L and U from the factorization  
 *     A = P*L*U as computed by DGETRF.  
 *  
 *     LDAF           (input) INTEGER  
 *     The leading dimension of the array AF.  LDAF >= max(1,N).  
 *  
 *     IPIV           (input) INTEGER array, dimension (N)  
 *     The pivot indices from the factorization A = P*L*U  
 *     as computed by DGETRF; row i of the matrix was interchanged  
 *     with row IPIV(i).  
 *  
 *     COLEQU         (input) LOGICAL  
 *     If .TRUE. then column equilibration was done to A before calling  
 *     this routine. This is needed to compute the solution and error  
 *     bounds correctly.  
 *  
 *     C              (input) DOUBLE PRECISION  array, dimension (N)  
 *     The column scale factors for A. If COLEQU = .FALSE., C  
 *     is not accessed. If C is input, each element of C should be a power  
 *     of the radix to ensure a reliable solution and error estimates.  
 *     Scaling by powers of the radix does not cause rounding errors unless  
 *     the result underflows or overflows. Rounding errors during scaling  
 *     lead to refining with a matrix that is not equivalent to the  
 *     input matrix, producing error estimates that may not be  
 *     reliable.  
 *  
 *     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS)  
 *     The right-hand-side matrix B.  
 *  
 *     LDB            (input) INTEGER  
 *     The leading dimension of the array B.  LDB >= max(1,N).  
 *  
 *     Y              (input/output) DOUBLE PRECISION array, dimension  
 *                    (LDY,NRHS)  
 *     On entry, the solution matrix X, as computed by DGETRS.  
 *     On exit, the improved solution matrix Y.  
 *  
 *     LDY            (input) INTEGER  
 *     The leading dimension of the array Y.  LDY >= max(1,N).  
 *  
 *     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS)  
 *     On exit, BERR_OUT(j) contains the componentwise relative backward  
 *     error for right-hand-side j from the formula  
 *         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )  
 *     where abs(Z) is the componentwise absolute value of the matrix  
 *     or vector Z. This is computed by DLA_LIN_BERR.  
 *  
 *     N_NORMS        (input) INTEGER  
 *     Determines which error bounds to return (see ERR_BNDS_NORM  
 *     and ERR_BNDS_COMP).  
 *     If N_NORMS >= 1 return normwise error bounds.  
 *     If N_NORMS >= 2 return componentwise error bounds.  
 *  
 *     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension  
 *                    (NRHS, N_ERR_BNDS)  
 *     For each right-hand side, this array contains information about  
 *     various error bounds and condition numbers corresponding to the  
 *     normwise relative error, which is defined as follows:  
 *  
 *     Normwise relative error in the ith solution vector:  
 *             max_j (abs(XTRUE(j,i) - X(j,i)))  
 *            ------------------------------  
 *                  max_j abs(X(j,i))  
 *  
 *     The array is indexed by the type of error information as described  
 *     below. There currently are up to three pieces of information  
 *     returned.  
 *  
 *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith  
 *     right-hand side.  
 *  
 *     The second index in ERR_BNDS_NORM(:,err) contains the following  
 *     three fields:  
 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the  
 *              reciprocal condition number is less than the threshold  
 *              sqrt(n) * slamch('Epsilon').  
 *  
 *     err = 2 "Guaranteed" error bound: The estimated forward error,  
 *              almost certainly within a factor of 10 of the true error  
 *              so long as the next entry is greater than the threshold  
 *              sqrt(n) * slamch('Epsilon'). This error bound should only  
 *              be trusted if the previous boolean is true.  
 *  
 *     err = 3  Reciprocal condition number: Estimated normwise  
 *              reciprocal condition number.  Compared with the threshold  
 *              sqrt(n) * slamch('Epsilon') to determine if the error  
 *              estimate is "guaranteed". These reciprocal condition  
 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some  
 *              appropriately scaled matrix Z.  
 *              Let Z = S*A, where S scales each row by a power of the  
 *              radix so all absolute row sums of Z are approximately 1.  
 *  
 *     This subroutine is only responsible for setting the second field  
 *     above.  
 *     See Lapack Working Note 165 for further details and extra  
 *     cautions.  
 *  
 *     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension  
 *                    (NRHS, N_ERR_BNDS)  
 *     For each right-hand side, this array contains information about  
 *     various error bounds and condition numbers corresponding to the  
 *     componentwise relative error, which is defined as follows:  
 *  
 *     Componentwise relative error in the ith solution vector:  
 *                    abs(XTRUE(j,i) - X(j,i))  
 *             max_j ----------------------  
 *                         abs(X(j,i))  
 *  
 *     The array is indexed by the right-hand side i (on which the  
 *     componentwise relative error depends), and the type of error  
 *     information as described below. There currently are up to three  
 *     pieces of information returned for each right-hand side. If  
 *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then  
 *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most  
 *     the first (:,N_ERR_BNDS) entries are returned.  
 *  
 *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith  
 *     right-hand side.  
 *  
 *     The second index in ERR_BNDS_COMP(:,err) contains the following  
 *     three fields:  
 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the  
 *              reciprocal condition number is less than the threshold  
 *              sqrt(n) * slamch('Epsilon').  
 *  
 *     err = 2 "Guaranteed" error bound: The estimated forward error,  
 *              almost certainly within a factor of 10 of the true error  
 *              so long as the next entry is greater than the threshold  
 *              sqrt(n) * slamch('Epsilon'). This error bound should only  
 *              be trusted if the previous boolean is true.  
 *  
 *     err = 3  Reciprocal condition number: Estimated componentwise  
 *              reciprocal condition number.  Compared with the threshold  
 *              sqrt(n) * slamch('Epsilon') to determine if the error  
 *              estimate is "guaranteed". These reciprocal condition  
 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some  
 *              appropriately scaled matrix Z.  
 *              Let Z = S*(A*diag(x)), where x is the solution for the  
 *              current right-hand side and S scales each row of  
 *              A*diag(x) by a power of the radix so all absolute row  
 *              sums of Z are approximately 1.  
 *  
 *     This subroutine is only responsible for setting the second field  
 *     above.  
 *     See Lapack Working Note 165 for further details and extra  
 *     cautions.  
 *  
 *     RES            (input) DOUBLE PRECISION array, dimension (N)  
 *     Workspace to hold the intermediate residual.  
 *  
 *     AYB            (input) DOUBLE PRECISION array, dimension (N)  
 *     Workspace. This can be the same workspace passed for Y_TAIL.  
 *  
 *     DY             (input) DOUBLE PRECISION array, dimension (N)  
 *     Workspace to hold the intermediate solution.  
 *  
 *     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N)  
 *     Workspace to hold the trailing bits of the intermediate solution.  
 *  
 *     RCOND          (input) DOUBLE PRECISION  
 *     Reciprocal scaled condition number.  This is an estimate of the  
 *     reciprocal Skeel condition number of the matrix A after  
 *     equilibration (if done).  If this is less than the machine  
 *     precision (in particular, if it is zero), the matrix is singular  
 *     to working precision.  Note that the error may still be small even  
 *     if this number is very small and the matrix appears ill-  
 *     conditioned.  
 *  
 *     ITHRESH        (input) INTEGER  
 *     The maximum number of residual computations allowed for  
 *     refinement. The default is 10. For 'aggressive' set to 100 to  
 *     permit convergence using approximate factorizations or  
 *     factorizations other than LU. If the factorization uses a  
 *     technique other than Gaussian elimination, the guarantees in  
 *     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.  
 *  
 *     RTHRESH        (input) DOUBLE PRECISION  
 *     Determines when to stop refinement if the error estimate stops  
 *     decreasing. Refinement will stop when the next solution no longer  
 *     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is  
 *     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The  
 *     default value is 0.5. For 'aggressive' set to 0.9 to permit  
 *     convergence on extremely ill-conditioned matrices. See LAWN 165  
 *     for more details.  
 *  
 *     DZ_UB          (input) DOUBLE PRECISION  
 *     Determines when to start considering componentwise convergence.  
 *     Componentwise convergence is only considered after each component  
 *     of the solution Y is stable, which we definte as the relative  
 *     change in each component being less than DZ_UB. The default value  
 *     is 0.25, requiring the first bit to be stable. See LAWN 165 for  
 *     more details.  
 *  
 *     IGNORE_CWISE   (input) LOGICAL  
 *     If .TRUE. then ignore componentwise convergence. Default value  
 *     is .FALSE..  
 *  
 *     INFO           (output) INTEGER  
 *       = 0:  Successful exit.  
 *       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal  
 *             value  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Local Scalars ..  *     .. Local Scalars ..

Removed from v.1.4  
changed lines
  Added in v.1.5


CVSweb interface <joel.bertrand@systella.fr>