File:  [local] / rpl / lapack / lapack / dla_gercond.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:21:04 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour Lapack 3.2.2.

    1:       DOUBLE PRECISION FUNCTION DLA_GERCOND ( TRANS, N, A, LDA, AF,
    2:      $                                        LDAF, IPIV, CMODE, C,
    3:      $                                        INFO, WORK, IWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.1)                                 --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- April 2009                                                   --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          TRANS
   17:       INTEGER            N, LDA, LDAF, INFO, CMODE
   18: *     ..
   19: *     .. Array Arguments ..
   20:       INTEGER            IPIV( * ), IWORK( * )
   21:       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ),
   22:      $                   C( * )
   23: *     ..
   24: *
   25: *  Purpose
   26: *  =======
   27: *
   28: *     DLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
   29: *     where op2 is determined by CMODE as follows
   30: *     CMODE =  1    op2(C) = C
   31: *     CMODE =  0    op2(C) = I
   32: *     CMODE = -1    op2(C) = inv(C)
   33: *     The Skeel condition number cond(A) = norminf( |inv(A)||A| )
   34: *     is computed by computing scaling factors R such that
   35: *     diag(R)*A*op2(C) is row equilibrated and computing the standard
   36: *     infinity-norm condition number.
   37: *
   38: *  Arguments
   39: *  ==========
   40: *
   41: *     TRANS   (input) CHARACTER*1
   42: *     Specifies the form of the system of equations:
   43: *       = 'N':  A * X = B     (No transpose)
   44: *       = 'T':  A**T * X = B  (Transpose)
   45: *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   46: *
   47: *     N       (input) INTEGER
   48: *     The number of linear equations, i.e., the order of the
   49: *     matrix A.  N >= 0.
   50: *
   51: *     A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   52: *     On entry, the N-by-N matrix A.
   53: *
   54: *     LDA     (input) INTEGER
   55: *     The leading dimension of the array A.  LDA >= max(1,N).
   56: *
   57: *     AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
   58: *     The factors L and U from the factorization
   59: *     A = P*L*U as computed by DGETRF.
   60: *
   61: *     LDAF    (input) INTEGER
   62: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   63: *
   64: *     IPIV    (input) INTEGER array, dimension (N)
   65: *     The pivot indices from the factorization A = P*L*U
   66: *     as computed by DGETRF; row i of the matrix was interchanged
   67: *     with row IPIV(i).
   68: *
   69: *     CMODE   (input) INTEGER
   70: *     Determines op2(C) in the formula op(A) * op2(C) as follows:
   71: *     CMODE =  1    op2(C) = C
   72: *     CMODE =  0    op2(C) = I
   73: *     CMODE = -1    op2(C) = inv(C)
   74: *
   75: *     C       (input) DOUBLE PRECISION array, dimension (N)
   76: *     The vector C in the formula op(A) * op2(C).
   77: *
   78: *     INFO    (output) INTEGER
   79: *       = 0:  Successful exit.
   80: *     i > 0:  The ith argument is invalid.
   81: *
   82: *     WORK    (input) DOUBLE PRECISION array, dimension (3*N).
   83: *     Workspace.
   84: *
   85: *     IWORK   (input) INTEGER array, dimension (N).
   86: *     Workspace.
   87: *
   88: *  =====================================================================
   89: *
   90: *     .. Local Scalars ..
   91:       LOGICAL            NOTRANS
   92:       INTEGER            KASE, I, J
   93:       DOUBLE PRECISION   AINVNM, TMP
   94: *     ..
   95: *     .. Local Arrays ..
   96:       INTEGER            ISAVE( 3 )
   97: *     ..
   98: *     .. External Functions ..
   99:       LOGICAL            LSAME
  100:       EXTERNAL           LSAME
  101: *     ..
  102: *     .. External Subroutines ..
  103:       EXTERNAL           DLACN2, DGETRS, XERBLA
  104: *     ..
  105: *     .. Intrinsic Functions ..
  106:       INTRINSIC          ABS, MAX
  107: *     ..
  108: *     .. Executable Statements ..
  109: *
  110:       DLA_GERCOND = 0.0D+0
  111: *
  112:       INFO = 0
  113:       NOTRANS = LSAME( TRANS, 'N' )
  114:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
  115:      $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
  116:          INFO = -1
  117:       ELSE IF( N.LT.0 ) THEN
  118:          INFO = -2
  119:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  120:          INFO = -4
  121:       ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  122:          INFO = -6
  123:       END IF
  124:       IF( INFO.NE.0 ) THEN
  125:          CALL XERBLA( 'DLA_GERCOND', -INFO )
  126:          RETURN
  127:       END IF
  128:       IF( N.EQ.0 ) THEN
  129:          DLA_GERCOND = 1.0D+0
  130:          RETURN
  131:       END IF
  132: *
  133: *     Compute the equilibration matrix R such that
  134: *     inv(R)*A*C has unit 1-norm.
  135: *
  136:       IF (NOTRANS) THEN
  137:          DO I = 1, N
  138:             TMP = 0.0D+0
  139:             IF ( CMODE .EQ. 1 ) THEN
  140:                DO J = 1, N
  141:                   TMP = TMP + ABS( A( I, J ) * C( J ) )
  142:                END DO
  143:             ELSE IF ( CMODE .EQ. 0 ) THEN
  144:                DO J = 1, N
  145:                   TMP = TMP + ABS( A( I, J ) )
  146:                END DO
  147:             ELSE
  148:                DO J = 1, N
  149:                   TMP = TMP + ABS( A( I, J ) / C( J ) )
  150:                END DO
  151:             END IF
  152:             WORK( 2*N+I ) = TMP
  153:          END DO
  154:       ELSE
  155:          DO I = 1, N
  156:             TMP = 0.0D+0
  157:             IF ( CMODE .EQ. 1 ) THEN
  158:                DO J = 1, N
  159:                   TMP = TMP + ABS( A( J, I ) * C( J ) )
  160:                END DO
  161:             ELSE IF ( CMODE .EQ. 0 ) THEN
  162:                DO J = 1, N
  163:                   TMP = TMP + ABS( A( J, I ) )
  164:                END DO
  165:             ELSE
  166:                DO J = 1, N
  167:                   TMP = TMP + ABS( A( J, I ) / C( J ) )
  168:                END DO
  169:             END IF
  170:             WORK( 2*N+I ) = TMP
  171:          END DO
  172:       END IF
  173: *
  174: *     Estimate the norm of inv(op(A)).
  175: *
  176:       AINVNM = 0.0D+0
  177: 
  178:       KASE = 0
  179:    10 CONTINUE
  180:       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  181:       IF( KASE.NE.0 ) THEN
  182:          IF( KASE.EQ.2 ) THEN
  183: *
  184: *           Multiply by R.
  185: *
  186:             DO I = 1, N
  187:                WORK(I) = WORK(I) * WORK(2*N+I)
  188:             END DO
  189: 
  190:             IF (NOTRANS) THEN
  191:                CALL DGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  192:      $            WORK, N, INFO )
  193:             ELSE
  194:                CALL DGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
  195:      $            WORK, N, INFO )
  196:             END IF
  197: *
  198: *           Multiply by inv(C).
  199: *
  200:             IF ( CMODE .EQ. 1 ) THEN
  201:                DO I = 1, N
  202:                   WORK( I ) = WORK( I ) / C( I )
  203:                END DO
  204:             ELSE IF ( CMODE .EQ. -1 ) THEN
  205:                DO I = 1, N
  206:                   WORK( I ) = WORK( I ) * C( I )
  207:                END DO
  208:             END IF
  209:          ELSE
  210: *
  211: *           Multiply by inv(C').
  212: *
  213:             IF ( CMODE .EQ. 1 ) THEN
  214:                DO I = 1, N
  215:                   WORK( I ) = WORK( I ) / C( I )
  216:                END DO
  217:             ELSE IF ( CMODE .EQ. -1 ) THEN
  218:                DO I = 1, N
  219:                   WORK( I ) = WORK( I ) * C( I )
  220:                END DO
  221:             END IF
  222: 
  223:             IF (NOTRANS) THEN
  224:                CALL DGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
  225:      $            WORK, N, INFO )
  226:             ELSE
  227:                CALL DGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  228:      $            WORK, N, INFO )
  229:             END IF
  230: *
  231: *           Multiply by R.
  232: *
  233:             DO I = 1, N
  234:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  235:             END DO
  236:          END IF
  237:          GO TO 10
  238:       END IF
  239: *
  240: *     Compute the estimate of the reciprocal condition number.
  241: *
  242:       IF( AINVNM .NE. 0.0D+0 )
  243:      $   DLA_GERCOND = ( 1.0D+0 / AINVNM )
  244: *
  245:       RETURN
  246: *
  247:       END

CVSweb interface <joel.bertrand@systella.fr>