File:  [local] / rpl / lapack / lapack / dla_geamv.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:52 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DLA_GEAMV computes a matrix-vector product using a general matrix to calculate error bounds.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DLA_GEAMV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_geamv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_geamv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_geamv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DLA_GEAMV( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
   22: *                             Y, INCY )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       DOUBLE PRECISION   ALPHA, BETA
   26: *       INTEGER            INCX, INCY, LDA, M, N, TRANS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DLA_GEAMV  performs one of the matrix-vector operations
   39: *>
   40: *>         y := alpha*abs(A)*abs(x) + beta*abs(y),
   41: *>    or   y := alpha*abs(A)**T*abs(x) + beta*abs(y),
   42: *>
   43: *> where alpha and beta are scalars, x and y are vectors and A is an
   44: *> m by n matrix.
   45: *>
   46: *> This function is primarily used in calculating error bounds.
   47: *> To protect against underflow during evaluation, components in
   48: *> the resulting vector are perturbed away from zero by (N+1)
   49: *> times the underflow threshold.  To prevent unnecessarily large
   50: *> errors for block-structure embedded in general matrices,
   51: *> "symbolically" zero components are not perturbed.  A zero
   52: *> entry is considered "symbolic" if all multiplications involved
   53: *> in computing that entry have at least one zero multiplicand.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] TRANS
   60: *> \verbatim
   61: *>          TRANS is INTEGER
   62: *>           On entry, TRANS specifies the operation to be performed as
   63: *>           follows:
   64: *>
   65: *>             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
   66: *>             BLAS_TRANS         y := alpha*abs(A**T)*abs(x) + beta*abs(y)
   67: *>             BLAS_CONJ_TRANS    y := alpha*abs(A**T)*abs(x) + beta*abs(y)
   68: *>
   69: *>           Unchanged on exit.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] M
   73: *> \verbatim
   74: *>          M is INTEGER
   75: *>           On entry, M specifies the number of rows of the matrix A.
   76: *>           M must be at least zero.
   77: *>           Unchanged on exit.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>           On entry, N specifies the number of columns of the matrix A.
   84: *>           N must be at least zero.
   85: *>           Unchanged on exit.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] ALPHA
   89: *> \verbatim
   90: *>          ALPHA is DOUBLE PRECISION
   91: *>           On entry, ALPHA specifies the scalar alpha.
   92: *>           Unchanged on exit.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] A
   96: *> \verbatim
   97: *>          A is DOUBLE PRECISION array, dimension ( LDA, n )
   98: *>           Before entry, the leading m by n part of the array A must
   99: *>           contain the matrix of coefficients.
  100: *>           Unchanged on exit.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>           On entry, LDA specifies the first dimension of A as declared
  107: *>           in the calling (sub) program. LDA must be at least
  108: *>           max( 1, m ).
  109: *>           Unchanged on exit.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] X
  113: *> \verbatim
  114: *>          X is DOUBLE PRECISION array, dimension
  115: *>           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  116: *>           and at least
  117: *>           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  118: *>           Before entry, the incremented array X must contain the
  119: *>           vector x.
  120: *>           Unchanged on exit.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] INCX
  124: *> \verbatim
  125: *>          INCX is INTEGER
  126: *>           On entry, INCX specifies the increment for the elements of
  127: *>           X. INCX must not be zero.
  128: *>           Unchanged on exit.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] BETA
  132: *> \verbatim
  133: *>          BETA is DOUBLE PRECISION
  134: *>           On entry, BETA specifies the scalar beta. When BETA is
  135: *>           supplied as zero then Y need not be set on input.
  136: *>           Unchanged on exit.
  137: *> \endverbatim
  138: *>
  139: *> \param[in,out] Y
  140: *> \verbatim
  141: *>          Y is DOUBLE PRECISION array,
  142: *>           dimension at least
  143: *>           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  144: *>           and at least
  145: *>           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  146: *>           Before entry with BETA non-zero, the incremented array Y
  147: *>           must contain the vector y. On exit, Y is overwritten by the
  148: *>           updated vector y.
  149: *> \endverbatim
  150: *>
  151: *> \param[in] INCY
  152: *> \verbatim
  153: *>          INCY is INTEGER
  154: *>           On entry, INCY specifies the increment for the elements of
  155: *>           Y. INCY must not be zero.
  156: *>           Unchanged on exit.
  157: *>
  158: *>  Level 2 Blas routine.
  159: *> \endverbatim
  160: *
  161: *  Authors:
  162: *  ========
  163: *
  164: *> \author Univ. of Tennessee
  165: *> \author Univ. of California Berkeley
  166: *> \author Univ. of Colorado Denver
  167: *> \author NAG Ltd.
  168: *
  169: *> \ingroup doubleGEcomputational
  170: *
  171: *  =====================================================================
  172:       SUBROUTINE DLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
  173:      $                       Y, INCY )
  174: *
  175: *  -- LAPACK computational routine --
  176: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  177: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  178: *
  179: *     .. Scalar Arguments ..
  180:       DOUBLE PRECISION   ALPHA, BETA
  181:       INTEGER            INCX, INCY, LDA, M, N, TRANS
  182: *     ..
  183: *     .. Array Arguments ..
  184:       DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
  185: *     ..
  186: *
  187: *  =====================================================================
  188: *
  189: *     .. Parameters ..
  190:       DOUBLE PRECISION   ONE, ZERO
  191:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  192: *     ..
  193: *     .. Local Scalars ..
  194:       LOGICAL            SYMB_ZERO
  195:       DOUBLE PRECISION   TEMP, SAFE1
  196:       INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY
  197: *     ..
  198: *     .. External Subroutines ..
  199:       EXTERNAL           XERBLA, DLAMCH
  200:       DOUBLE PRECISION   DLAMCH
  201: *     ..
  202: *     .. External Functions ..
  203:       EXTERNAL           ILATRANS
  204:       INTEGER            ILATRANS
  205: *     ..
  206: *     .. Intrinsic Functions ..
  207:       INTRINSIC          MAX, ABS, SIGN
  208: *     ..
  209: *     .. Executable Statements ..
  210: *
  211: *     Test the input parameters.
  212: *
  213:       INFO = 0
  214:       IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  215:      $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  216:      $           .OR. ( TRANS.EQ.ILATRANS( 'C' )) ) ) THEN
  217:          INFO = 1
  218:       ELSE IF( M.LT.0 )THEN
  219:          INFO = 2
  220:       ELSE IF( N.LT.0 )THEN
  221:          INFO = 3
  222:       ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  223:          INFO = 6
  224:       ELSE IF( INCX.EQ.0 )THEN
  225:          INFO = 8
  226:       ELSE IF( INCY.EQ.0 )THEN
  227:          INFO = 11
  228:       END IF
  229:       IF( INFO.NE.0 )THEN
  230:          CALL XERBLA( 'DLA_GEAMV ', INFO )
  231:          RETURN
  232:       END IF
  233: *
  234: *     Quick return if possible.
  235: *
  236:       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  237:      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  238:      $   RETURN
  239: *
  240: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  241: *     up the start points in  X  and  Y.
  242: *
  243:       IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  244:          LENX = N
  245:          LENY = M
  246:       ELSE
  247:          LENX = M
  248:          LENY = N
  249:       END IF
  250:       IF( INCX.GT.0 )THEN
  251:          KX = 1
  252:       ELSE
  253:          KX = 1 - ( LENX - 1 )*INCX
  254:       END IF
  255:       IF( INCY.GT.0 )THEN
  256:          KY = 1
  257:       ELSE
  258:          KY = 1 - ( LENY - 1 )*INCY
  259:       END IF
  260: *
  261: *     Set SAFE1 essentially to be the underflow threshold times the
  262: *     number of additions in each row.
  263: *
  264:       SAFE1 = DLAMCH( 'Safe minimum' )
  265:       SAFE1 = (N+1)*SAFE1
  266: *
  267: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  268: *
  269: *     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  270: *     the inexact flag.  Still doesn't help change the iteration order
  271: *     to per-column.
  272: *
  273:       IY = KY
  274:       IF ( INCX.EQ.1 ) THEN
  275:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  276:             DO I = 1, LENY
  277:                IF ( BETA .EQ. ZERO ) THEN
  278:                   SYMB_ZERO = .TRUE.
  279:                   Y( IY ) = 0.0D+0
  280:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  281:                   SYMB_ZERO = .TRUE.
  282:                ELSE
  283:                   SYMB_ZERO = .FALSE.
  284:                   Y( IY ) = BETA * ABS( Y( IY ) )
  285:                END IF
  286:                IF ( ALPHA .NE. ZERO ) THEN
  287:                   DO J = 1, LENX
  288:                      TEMP = ABS( A( I, J ) )
  289:                      SYMB_ZERO = SYMB_ZERO .AND.
  290:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  291: 
  292:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  293:                   END DO
  294:                END IF
  295: 
  296:                IF ( .NOT.SYMB_ZERO )
  297:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  298: 
  299:                IY = IY + INCY
  300:             END DO
  301:          ELSE
  302:             DO I = 1, LENY
  303:                IF ( BETA .EQ. ZERO ) THEN
  304:                   SYMB_ZERO = .TRUE.
  305:                   Y( IY ) = 0.0D+0
  306:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  307:                   SYMB_ZERO = .TRUE.
  308:                ELSE
  309:                   SYMB_ZERO = .FALSE.
  310:                   Y( IY ) = BETA * ABS( Y( IY ) )
  311:                END IF
  312:                IF ( ALPHA .NE. ZERO ) THEN
  313:                   DO J = 1, LENX
  314:                      TEMP = ABS( A( J, I ) )
  315:                      SYMB_ZERO = SYMB_ZERO .AND.
  316:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  317: 
  318:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  319:                   END DO
  320:                END IF
  321: 
  322:                IF ( .NOT.SYMB_ZERO )
  323:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  324: 
  325:                IY = IY + INCY
  326:             END DO
  327:          END IF
  328:       ELSE
  329:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  330:             DO I = 1, LENY
  331:                IF ( BETA .EQ. ZERO ) THEN
  332:                   SYMB_ZERO = .TRUE.
  333:                   Y( IY ) = 0.0D+0
  334:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  335:                   SYMB_ZERO = .TRUE.
  336:                ELSE
  337:                   SYMB_ZERO = .FALSE.
  338:                   Y( IY ) = BETA * ABS( Y( IY ) )
  339:                END IF
  340:                IF ( ALPHA .NE. ZERO ) THEN
  341:                   JX = KX
  342:                   DO J = 1, LENX
  343:                      TEMP = ABS( A( I, J ) )
  344:                      SYMB_ZERO = SYMB_ZERO .AND.
  345:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  346: 
  347:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  348:                      JX = JX + INCX
  349:                   END DO
  350:                END IF
  351: 
  352:                IF (.NOT.SYMB_ZERO)
  353:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  354: 
  355:                IY = IY + INCY
  356:             END DO
  357:          ELSE
  358:             DO I = 1, LENY
  359:                IF ( BETA .EQ. ZERO ) THEN
  360:                   SYMB_ZERO = .TRUE.
  361:                   Y( IY ) = 0.0D+0
  362:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  363:                   SYMB_ZERO = .TRUE.
  364:                ELSE
  365:                   SYMB_ZERO = .FALSE.
  366:                   Y( IY ) = BETA * ABS( Y( IY ) )
  367:                END IF
  368:                IF ( ALPHA .NE. ZERO ) THEN
  369:                   JX = KX
  370:                   DO J = 1, LENX
  371:                      TEMP = ABS( A( J, I ) )
  372:                      SYMB_ZERO = SYMB_ZERO .AND.
  373:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  374: 
  375:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  376:                      JX = JX + INCX
  377:                   END DO
  378:                END IF
  379: 
  380:                IF (.NOT.SYMB_ZERO)
  381:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  382: 
  383:                IY = IY + INCY
  384:             END DO
  385:          END IF
  386: 
  387:       END IF
  388: *
  389:       RETURN
  390: *
  391: *     End of DLA_GEAMV
  392: *
  393:       END

CVSweb interface <joel.bertrand@systella.fr>