File:  [local] / rpl / lapack / lapack / dla_geamv.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:47 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DLA_GEAMV ( TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA,
    2:      $                       Y, INCY )
    3: *
    4: *     -- LAPACK routine (version 3.2.2)                                 --
    5: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    6: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    7: *     -- June 2010                                                    --
    8: *
    9: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   10: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   11: *
   12:       IMPLICIT NONE
   13: *     ..
   14: *     .. Scalar Arguments ..
   15:       DOUBLE PRECISION   ALPHA, BETA
   16:       INTEGER            INCX, INCY, LDA, M, N, TRANS
   17: *     ..
   18: *     .. Array Arguments ..
   19:       DOUBLE PRECISION   A( LDA, * ), X( * ), Y( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DLA_GEAMV  performs one of the matrix-vector operations
   26: *
   27: *          y := alpha*abs(A)*abs(x) + beta*abs(y),
   28: *     or   y := alpha*abs(A)'*abs(x) + beta*abs(y),
   29: *
   30: *  where alpha and beta are scalars, x and y are vectors and A is an
   31: *  m by n matrix.
   32: *
   33: *  This function is primarily used in calculating error bounds.
   34: *  To protect against underflow during evaluation, components in
   35: *  the resulting vector are perturbed away from zero by (N+1)
   36: *  times the underflow threshold.  To prevent unnecessarily large
   37: *  errors for block-structure embedded in general matrices,
   38: *  "symbolically" zero components are not perturbed.  A zero
   39: *  entry is considered "symbolic" if all multiplications involved
   40: *  in computing that entry have at least one zero multiplicand.
   41: *
   42: *  Arguments
   43: *  ==========
   44: *
   45: *  TRANS   (input) INTEGER
   46: *           On entry, TRANS specifies the operation to be performed as
   47: *           follows:
   48: *
   49: *             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
   50: *             BLAS_TRANS         y := alpha*abs(A')*abs(x) + beta*abs(y)
   51: *             BLAS_CONJ_TRANS    y := alpha*abs(A')*abs(x) + beta*abs(y)
   52: *
   53: *           Unchanged on exit.
   54: *
   55: *  M       (input) INTEGER
   56: *           On entry, M specifies the number of rows of the matrix A.
   57: *           M must be at least zero.
   58: *           Unchanged on exit.
   59: *
   60: *  N       (input) INTEGER
   61: *           On entry, N specifies the number of columns of the matrix A.
   62: *           N must be at least zero.
   63: *           Unchanged on exit.
   64: *
   65: *  ALPHA  - DOUBLE PRECISION
   66: *           On entry, ALPHA specifies the scalar alpha.
   67: *           Unchanged on exit.
   68: *
   69: *  A      - DOUBLE PRECISION   array of DIMENSION ( LDA, n )
   70: *           Before entry, the leading m by n part of the array A must
   71: *           contain the matrix of coefficients.
   72: *           Unchanged on exit.
   73: *
   74: *  LDA     (input) INTEGER
   75: *           On entry, LDA specifies the first dimension of A as declared
   76: *           in the calling (sub) program. LDA must be at least
   77: *           max( 1, m ).
   78: *           Unchanged on exit.
   79: *
   80: *  X       (input) DOUBLE PRECISION array, dimension
   81: *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
   82: *           and at least
   83: *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
   84: *           Before entry, the incremented array X must contain the
   85: *           vector x.
   86: *           Unchanged on exit.
   87: *
   88: *  INCX    (input) INTEGER
   89: *           On entry, INCX specifies the increment for the elements of
   90: *           X. INCX must not be zero.
   91: *           Unchanged on exit.
   92: *
   93: *  BETA   - DOUBLE PRECISION
   94: *           On entry, BETA specifies the scalar beta. When BETA is
   95: *           supplied as zero then Y need not be set on input.
   96: *           Unchanged on exit.
   97: *
   98: *  Y      - DOUBLE PRECISION
   99: *           Array of DIMENSION at least
  100: *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  101: *           and at least
  102: *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  103: *           Before entry with BETA non-zero, the incremented array Y
  104: *           must contain the vector y. On exit, Y is overwritten by the
  105: *           updated vector y.
  106: *
  107: *  INCY    (input) INTEGER
  108: *           On entry, INCY specifies the increment for the elements of
  109: *           Y. INCY must not be zero.
  110: *           Unchanged on exit.
  111: *
  112: *  Level 2 Blas routine.
  113: *
  114: *  =====================================================================
  115: *
  116: *     .. Parameters ..
  117:       DOUBLE PRECISION   ONE, ZERO
  118:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  119: *     ..
  120: *     .. Local Scalars ..
  121:       LOGICAL            SYMB_ZERO
  122:       DOUBLE PRECISION   TEMP, SAFE1
  123:       INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY
  124: *     ..
  125: *     .. External Subroutines ..
  126:       EXTERNAL           XERBLA, DLAMCH
  127:       DOUBLE PRECISION   DLAMCH
  128: *     ..
  129: *     .. External Functions ..
  130:       EXTERNAL           ILATRANS
  131:       INTEGER            ILATRANS
  132: *     ..
  133: *     .. Intrinsic Functions ..
  134:       INTRINSIC          MAX, ABS, SIGN
  135: *     ..
  136: *     .. Executable Statements ..
  137: *
  138: *     Test the input parameters.
  139: *
  140:       INFO = 0
  141:       IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  142:      $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  143:      $           .OR. ( TRANS.EQ.ILATRANS( 'C' )) ) ) THEN
  144:          INFO = 1
  145:       ELSE IF( M.LT.0 )THEN
  146:          INFO = 2
  147:       ELSE IF( N.LT.0 )THEN
  148:          INFO = 3
  149:       ELSE IF( LDA.LT.MAX( 1, M ) )THEN
  150:          INFO = 6
  151:       ELSE IF( INCX.EQ.0 )THEN
  152:          INFO = 8
  153:       ELSE IF( INCY.EQ.0 )THEN
  154:          INFO = 11
  155:       END IF
  156:       IF( INFO.NE.0 )THEN
  157:          CALL XERBLA( 'DLA_GEAMV ', INFO )
  158:          RETURN
  159:       END IF
  160: *
  161: *     Quick return if possible.
  162: *
  163:       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  164:      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  165:      $   RETURN
  166: *
  167: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  168: *     up the start points in  X  and  Y.
  169: *
  170:       IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  171:          LENX = N
  172:          LENY = M
  173:       ELSE
  174:          LENX = M
  175:          LENY = N
  176:       END IF
  177:       IF( INCX.GT.0 )THEN
  178:          KX = 1
  179:       ELSE
  180:          KX = 1 - ( LENX - 1 )*INCX
  181:       END IF
  182:       IF( INCY.GT.0 )THEN
  183:          KY = 1
  184:       ELSE
  185:          KY = 1 - ( LENY - 1 )*INCY
  186:       END IF
  187: *
  188: *     Set SAFE1 essentially to be the underflow threshold times the
  189: *     number of additions in each row.
  190: *
  191:       SAFE1 = DLAMCH( 'Safe minimum' )
  192:       SAFE1 = (N+1)*SAFE1
  193: *
  194: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  195: *
  196: *     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  197: *     the inexact flag.  Still doesn't help change the iteration order
  198: *     to per-column.
  199: *
  200:       IY = KY
  201:       IF ( INCX.EQ.1 ) THEN
  202:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  203:             DO I = 1, LENY
  204:                IF ( BETA .EQ. ZERO ) THEN
  205:                   SYMB_ZERO = .TRUE.
  206:                   Y( IY ) = 0.0D+0
  207:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  208:                   SYMB_ZERO = .TRUE.
  209:                ELSE
  210:                   SYMB_ZERO = .FALSE.
  211:                   Y( IY ) = BETA * ABS( Y( IY ) )
  212:                END IF
  213:                IF ( ALPHA .NE. ZERO ) THEN
  214:                   DO J = 1, LENX
  215:                      TEMP = ABS( A( I, J ) )
  216:                      SYMB_ZERO = SYMB_ZERO .AND.
  217:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  218: 
  219:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  220:                   END DO
  221:                END IF
  222: 
  223:                IF ( .NOT.SYMB_ZERO )
  224:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  225: 
  226:                IY = IY + INCY
  227:             END DO
  228:          ELSE
  229:             DO I = 1, LENY
  230:                IF ( BETA .EQ. ZERO ) THEN
  231:                   SYMB_ZERO = .TRUE.
  232:                   Y( IY ) = 0.0D+0
  233:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  234:                   SYMB_ZERO = .TRUE.
  235:                ELSE
  236:                   SYMB_ZERO = .FALSE.
  237:                   Y( IY ) = BETA * ABS( Y( IY ) )
  238:                END IF
  239:                IF ( ALPHA .NE. ZERO ) THEN
  240:                   DO J = 1, LENX
  241:                      TEMP = ABS( A( J, I ) )
  242:                      SYMB_ZERO = SYMB_ZERO .AND.
  243:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  244: 
  245:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  246:                   END DO
  247:                END IF
  248: 
  249:                IF ( .NOT.SYMB_ZERO )
  250:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  251: 
  252:                IY = IY + INCY
  253:             END DO
  254:          END IF
  255:       ELSE
  256:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  257:             DO I = 1, LENY
  258:                IF ( BETA .EQ. ZERO ) THEN
  259:                   SYMB_ZERO = .TRUE.
  260:                   Y( IY ) = 0.0D+0
  261:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  262:                   SYMB_ZERO = .TRUE.
  263:                ELSE
  264:                   SYMB_ZERO = .FALSE.
  265:                   Y( IY ) = BETA * ABS( Y( IY ) )
  266:                END IF
  267:                IF ( ALPHA .NE. ZERO ) THEN
  268:                   JX = KX
  269:                   DO J = 1, LENX
  270:                      TEMP = ABS( A( I, J ) )
  271:                      SYMB_ZERO = SYMB_ZERO .AND.
  272:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  273: 
  274:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  275:                      JX = JX + INCX
  276:                   END DO
  277:                END IF
  278: 
  279:                IF (.NOT.SYMB_ZERO)
  280:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  281: 
  282:                IY = IY + INCY
  283:             END DO
  284:          ELSE
  285:             DO I = 1, LENY
  286:                IF ( BETA .EQ. ZERO ) THEN
  287:                   SYMB_ZERO = .TRUE.
  288:                   Y( IY ) = 0.0D+0
  289:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  290:                   SYMB_ZERO = .TRUE.
  291:                ELSE
  292:                   SYMB_ZERO = .FALSE.
  293:                   Y( IY ) = BETA * ABS( Y( IY ) )
  294:                END IF
  295:                IF ( ALPHA .NE. ZERO ) THEN
  296:                   JX = KX
  297:                   DO J = 1, LENX
  298:                      TEMP = ABS( A( J, I ) )
  299:                      SYMB_ZERO = SYMB_ZERO .AND.
  300:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  301: 
  302:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  303:                      JX = JX + INCX
  304:                   END DO
  305:                END IF
  306: 
  307:                IF (.NOT.SYMB_ZERO)
  308:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  309: 
  310:                IY = IY + INCY
  311:             END DO
  312:          END IF
  313: 
  314:       END IF
  315: *
  316:       RETURN
  317: *
  318: *     End of DLA_GEAMV
  319: *
  320:       END

CVSweb interface <joel.bertrand@systella.fr>