File:  [local] / rpl / lapack / lapack / dla_gbrfsx_extended.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:21:04 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Ajout des nouveaux fichiers pour Lapack 3.2.2.

    1:       SUBROUTINE DLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
    2:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
    3:      $                                COLEQU, C, B, LDB, Y, LDY,
    4:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
    5:      $                                ERR_BNDS_COMP, RES, AYB, DY,
    6:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
    7:      $                                DZ_UB, IGNORE_CWISE, INFO )
    8: *
    9: *     -- LAPACK routine (version 3.2.1)                                 --
   10: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
   11: *     -- Jason Riedy of Univ. of California Berkeley.                 --
   12: *     -- April 2009                                                   --
   13: *
   14: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   15: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   16: *
   17:       IMPLICIT NONE
   18: *     ..
   19: *     .. Scalar Arguments ..
   20:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
   21:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
   22:       LOGICAL            COLEQU, IGNORE_CWISE
   23:       DOUBLE PRECISION   RTHRESH, DZ_UB
   24: *     ..
   25: *     .. Array Arguments ..
   26:       INTEGER            IPIV( * )
   27:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   28:      $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
   29:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT(*),
   30:      $                   ERR_BNDS_NORM( NRHS, * ),
   31:      $                   ERR_BNDS_COMP( NRHS, * )
   32: *     ..
   33: *
   34: *  Purpose
   35: *  =======
   36:    37: *  DLA_GBRFSX_EXTENDED improves the computed solution to a system of
   38: *  linear equations by performing extra-precise iterative refinement
   39: *  and provides error bounds and backward error estimates for the solution.
   40: *  This subroutine is called by DGBRFSX to perform iterative refinement.
   41: *  In addition to normwise error bound, the code provides maximum
   42: *  componentwise error bound if possible. See comments for ERR_BNDS_NORM
   43: *  and ERR_BNDS_COMP for details of the error bounds. Note that this
   44: *  subroutine is only resonsible for setting the second fields of
   45: *  ERR_BNDS_NORM and ERR_BNDS_COMP.
   46: *
   47: *  Arguments
   48: *  =========
   49: *
   50: *     PREC_TYPE      (input) INTEGER
   51: *     Specifies the intermediate precision to be used in refinement.
   52: *     The value is defined by ILAPREC(P) where P is a CHARACTER and
   53: *     P    = 'S':  Single
   54: *          = 'D':  Double
   55: *          = 'I':  Indigenous
   56: *          = 'X', 'E':  Extra
   57: *
   58: *     TRANS_TYPE     (input) INTEGER
   59: *     Specifies the transposition operation on A.
   60: *     The value is defined by ILATRANS(T) where T is a CHARACTER and
   61: *     T    = 'N':  No transpose
   62: *          = 'T':  Transpose
   63: *          = 'C':  Conjugate transpose
   64: *
   65: *     N              (input) INTEGER
   66: *     The number of linear equations, i.e., the order of the
   67: *     matrix A.  N >= 0.
   68: *
   69: *     KL             (input) INTEGER
   70: *     The number of subdiagonals within the band of A.  KL >= 0.
   71: *
   72: *     KU             (input) INTEGER
   73: *     The number of superdiagonals within the band of A.  KU >= 0
   74: *
   75: *     NRHS           (input) INTEGER
   76: *     The number of right-hand-sides, i.e., the number of columns of the
   77: *     matrix B.
   78: *
   79: *     A              (input) DOUBLE PRECISION array, dimension (LDA,N)
   80: *     On entry, the N-by-N matrix A.
   81: *
   82: *     LDA            (input) INTEGER
   83: *     The leading dimension of the array A.  LDA >= max(1,N).
   84: *
   85: *     AF             (input) DOUBLE PRECISION array, dimension (LDAF,N)
   86: *     The factors L and U from the factorization
   87: *     A = P*L*U as computed by DGBTRF.
   88: *
   89: *     LDAF           (input) INTEGER
   90: *     The leading dimension of the array AF.  LDAF >= max(1,N).
   91: *
   92: *     IPIV           (input) INTEGER array, dimension (N)
   93: *     The pivot indices from the factorization A = P*L*U
   94: *     as computed by DGBTRF; row i of the matrix was interchanged
   95: *     with row IPIV(i).
   96: *
   97: *     COLEQU         (input) LOGICAL
   98: *     If .TRUE. then column equilibration was done to A before calling
   99: *     this routine. This is needed to compute the solution and error
  100: *     bounds correctly.
  101: *
  102: *     C              (input) DOUBLE PRECISION array, dimension (N)
  103: *     The column scale factors for A. If COLEQU = .FALSE., C
  104: *     is not accessed. If C is input, each element of C should be a power
  105: *     of the radix to ensure a reliable solution and error estimates.
  106: *     Scaling by powers of the radix does not cause rounding errors unless
  107: *     the result underflows or overflows. Rounding errors during scaling
  108: *     lead to refining with a matrix that is not equivalent to the
  109: *     input matrix, producing error estimates that may not be
  110: *     reliable.
  111: *
  112: *     B              (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
  113: *     The right-hand-side matrix B.
  114: *
  115: *     LDB            (input) INTEGER
  116: *     The leading dimension of the array B.  LDB >= max(1,N).
  117: *
  118: *     Y              (input/output) DOUBLE PRECISION array, dimension 
  119: *                    (LDY,NRHS)
  120: *     On entry, the solution matrix X, as computed by DGBTRS.
  121: *     On exit, the improved solution matrix Y.
  122: *
  123: *     LDY            (input) INTEGER
  124: *     The leading dimension of the array Y.  LDY >= max(1,N).
  125: *
  126: *     BERR_OUT       (output) DOUBLE PRECISION array, dimension (NRHS)
  127: *     On exit, BERR_OUT(j) contains the componentwise relative backward
  128: *     error for right-hand-side j from the formula
  129: *         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  130: *     where abs(Z) is the componentwise absolute value of the matrix
  131: *     or vector Z. This is computed by DLA_LIN_BERR.
  132: *
  133: *     N_NORMS        (input) INTEGER
  134: *     Determines which error bounds to return (see ERR_BNDS_NORM
  135: *     and ERR_BNDS_COMP).
  136: *     If N_NORMS >= 1 return normwise error bounds.
  137: *     If N_NORMS >= 2 return componentwise error bounds.
  138: *
  139: *     ERR_BNDS_NORM  (input/output) DOUBLE PRECISION array, dimension 
  140: *                    (NRHS, N_ERR_BNDS)
  141: *     For each right-hand side, this array contains information about
  142: *     various error bounds and condition numbers corresponding to the
  143: *     normwise relative error, which is defined as follows:
  144: *
  145: *     Normwise relative error in the ith solution vector:
  146: *             max_j (abs(XTRUE(j,i) - X(j,i)))
  147: *            ------------------------------
  148: *                  max_j abs(X(j,i))
  149: *
  150: *     The array is indexed by the type of error information as described
  151: *     below. There currently are up to three pieces of information
  152: *     returned.
  153: *
  154: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
  155: *     right-hand side.
  156: *
  157: *     The second index in ERR_BNDS_NORM(:,err) contains the following
  158: *     three fields:
  159: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  160: *              reciprocal condition number is less than the threshold
  161: *              sqrt(n) * slamch('Epsilon').
  162: *
  163: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  164: *              almost certainly within a factor of 10 of the true error
  165: *              so long as the next entry is greater than the threshold
  166: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  167: *              be trusted if the previous boolean is true.
  168: *
  169: *     err = 3  Reciprocal condition number: Estimated normwise
  170: *              reciprocal condition number.  Compared with the threshold
  171: *              sqrt(n) * slamch('Epsilon') to determine if the error
  172: *              estimate is "guaranteed". These reciprocal condition
  173: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  174: *              appropriately scaled matrix Z.
  175: *              Let Z = S*A, where S scales each row by a power of the
  176: *              radix so all absolute row sums of Z are approximately 1.
  177: *
  178: *     This subroutine is only responsible for setting the second field
  179: *     above.
  180: *     See Lapack Working Note 165 for further details and extra
  181: *     cautions.
  182: *
  183: *     ERR_BNDS_COMP  (input/output) DOUBLE PRECISION array, dimension 
  184: *                    (NRHS, N_ERR_BNDS)
  185: *     For each right-hand side, this array contains information about
  186: *     various error bounds and condition numbers corresponding to the
  187: *     componentwise relative error, which is defined as follows:
  188: *
  189: *     Componentwise relative error in the ith solution vector:
  190: *                    abs(XTRUE(j,i) - X(j,i))
  191: *             max_j ----------------------
  192: *                         abs(X(j,i))
  193: *
  194: *     The array is indexed by the right-hand side i (on which the
  195: *     componentwise relative error depends), and the type of error
  196: *     information as described below. There currently are up to three
  197: *     pieces of information returned for each right-hand side. If
  198: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  199: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
  200: *     the first (:,N_ERR_BNDS) entries are returned.
  201: *
  202: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
  203: *     right-hand side.
  204: *
  205: *     The second index in ERR_BNDS_COMP(:,err) contains the following
  206: *     three fields:
  207: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
  208: *              reciprocal condition number is less than the threshold
  209: *              sqrt(n) * slamch('Epsilon').
  210: *
  211: *     err = 2 "Guaranteed" error bound: The estimated forward error,
  212: *              almost certainly within a factor of 10 of the true error
  213: *              so long as the next entry is greater than the threshold
  214: *              sqrt(n) * slamch('Epsilon'). This error bound should only
  215: *              be trusted if the previous boolean is true.
  216: *
  217: *     err = 3  Reciprocal condition number: Estimated componentwise
  218: *              reciprocal condition number.  Compared with the threshold
  219: *              sqrt(n) * slamch('Epsilon') to determine if the error
  220: *              estimate is "guaranteed". These reciprocal condition
  221: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  222: *              appropriately scaled matrix Z.
  223: *              Let Z = S*(A*diag(x)), where x is the solution for the
  224: *              current right-hand side and S scales each row of
  225: *              A*diag(x) by a power of the radix so all absolute row
  226: *              sums of Z are approximately 1.
  227: *
  228: *     This subroutine is only responsible for setting the second field
  229: *     above.
  230: *     See Lapack Working Note 165 for further details and extra
  231: *     cautions.
  232: *
  233: *     RES            (input) DOUBLE PRECISION array, dimension (N)
  234: *     Workspace to hold the intermediate residual.
  235: *
  236: *     AYB            (input) DOUBLE PRECISION array, dimension (N)
  237: *     Workspace. This can be the same workspace passed for Y_TAIL.
  238: *
  239: *     DY             (input) DOUBLE PRECISION array, dimension (N)
  240: *     Workspace to hold the intermediate solution.
  241: *
  242: *     Y_TAIL         (input) DOUBLE PRECISION array, dimension (N)
  243: *     Workspace to hold the trailing bits of the intermediate solution.
  244: *
  245: *     RCOND          (input) DOUBLE PRECISION
  246: *     Reciprocal scaled condition number.  This is an estimate of the
  247: *     reciprocal Skeel condition number of the matrix A after
  248: *     equilibration (if done).  If this is less than the machine
  249: *     precision (in particular, if it is zero), the matrix is singular
  250: *     to working precision.  Note that the error may still be small even
  251: *     if this number is very small and the matrix appears ill-
  252: *     conditioned.
  253: *
  254: *     ITHRESH        (input) INTEGER
  255: *     The maximum number of residual computations allowed for
  256: *     refinement. The default is 10. For 'aggressive' set to 100 to
  257: *     permit convergence using approximate factorizations or
  258: *     factorizations other than LU. If the factorization uses a
  259: *     technique other than Gaussian elimination, the guarantees in
  260: *     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
  261: *
  262: *     RTHRESH        (input) DOUBLE PRECISION
  263: *     Determines when to stop refinement if the error estimate stops
  264: *     decreasing. Refinement will stop when the next solution no longer
  265: *     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  266: *     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  267: *     default value is 0.5. For 'aggressive' set to 0.9 to permit
  268: *     convergence on extremely ill-conditioned matrices. See LAWN 165
  269: *     for more details.
  270: *
  271: *     DZ_UB          (input) DOUBLE PRECISION
  272: *     Determines when to start considering componentwise convergence.
  273: *     Componentwise convergence is only considered after each component
  274: *     of the solution Y is stable, which we definte as the relative
  275: *     change in each component being less than DZ_UB. The default value
  276: *     is 0.25, requiring the first bit to be stable. See LAWN 165 for
  277: *     more details.
  278: *
  279: *     IGNORE_CWISE   (input) LOGICAL
  280: *     If .TRUE. then ignore componentwise convergence. Default value
  281: *     is .FALSE..
  282: *
  283: *     INFO           (output) INTEGER
  284: *       = 0:  Successful exit.
  285: *       < 0:  if INFO = -i, the ith argument to DGBTRS had an illegal
  286: *             value
  287: *
  288: *  =====================================================================
  289: *
  290: *     .. Local Scalars ..
  291:       CHARACTER          TRANS
  292:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
  293:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  294:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  295:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  296:      $                   EPS, HUGEVAL, INCR_THRESH
  297:       LOGICAL            INCR_PREC
  298: *     ..
  299: *     .. Parameters ..
  300:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  301:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  302:      $                   EXTRA_Y
  303:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  304:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
  305:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  306:      $                   EXTRA_Y = 2 )
  307:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  308:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  309:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
  310:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  311:      $                   BERR_I = 3 )
  312:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  313:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  314:      $                   PIV_GROWTH_I = 9 )
  315:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  316:      $                   LA_LINRX_CWISE_I
  317:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
  318:      $                   LA_LINRX_ITHRESH_I = 2 )
  319:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
  320:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  321:      $                   LA_LINRX_RCOND_I
  322:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  323:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
  324: *     ..
  325: *     .. External Subroutines ..
  326:       EXTERNAL           DAXPY, DCOPY, DGBTRS, DGBMV, BLAS_DGBMV_X,
  327:      $                   BLAS_DGBMV2_X, DLA_GBAMV, DLA_WWADDW, DLAMCH,
  328:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
  329:       DOUBLE PRECISION   DLAMCH
  330:       CHARACTER          CHLA_TRANSTYPE
  331: *     ..
  332: *     .. Intrinsic Functions ..
  333:       INTRINSIC          ABS, MAX, MIN
  334: *     ..
  335: *     .. Executable Statements ..
  336: *
  337:       IF (INFO.NE.0) RETURN
  338:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  339:       EPS = DLAMCH( 'Epsilon' )
  340:       HUGEVAL = DLAMCH( 'Overflow' )
  341: *     Force HUGEVAL to Inf
  342:       HUGEVAL = HUGEVAL * HUGEVAL
  343: *     Using HUGEVAL may lead to spurious underflows.
  344:       INCR_THRESH = DBLE( N ) * EPS
  345:       M = KL+KU+1
  346: 
  347:       DO J = 1, NRHS
  348:          Y_PREC_STATE = EXTRA_RESIDUAL
  349:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  350:             DO I = 1, N
  351:                Y_TAIL( I ) = 0.0D+0
  352:             END DO
  353:          END IF
  354: 
  355:          DXRAT = 0.0D+0
  356:          DXRATMAX = 0.0D+0
  357:          DZRAT = 0.0D+0
  358:          DZRATMAX = 0.0D+0
  359:          FINAL_DX_X = HUGEVAL
  360:          FINAL_DZ_Z = HUGEVAL
  361:          PREVNORMDX = HUGEVAL
  362:          PREV_DZ_Z = HUGEVAL
  363:          DZ_Z = HUGEVAL
  364:          DX_X = HUGEVAL
  365: 
  366:          X_STATE = WORKING_STATE
  367:          Z_STATE = UNSTABLE_STATE
  368:          INCR_PREC = .FALSE.
  369: 
  370:          DO CNT = 1, ITHRESH
  371: *
  372: *        Compute residual RES = B_s - op(A_s) * Y,
  373: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  374: *
  375:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  376:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  377:                CALL DGBMV( TRANS, M, N, KL, KU, -1.0D+0, AB, LDAB,
  378:      $              Y( 1, J ), 1, 1.0D+0, RES, 1 )
  379:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  380:                CALL BLAS_DGBMV_X( TRANS_TYPE, N, N, KL, KU,
  381:      $              -1.0D+0, AB, LDAB, Y( 1, J ), 1, 1.0D+0, RES, 1,
  382:      $              PREC_TYPE )
  383:             ELSE
  384:                CALL BLAS_DGBMV2_X( TRANS_TYPE, N, N, KL, KU, -1.0D+0,
  385:      $              AB, LDAB, Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1,
  386:      $              PREC_TYPE )
  387:             END IF
  388: 
  389: !        XXX: RES is no longer needed.
  390:             CALL DCOPY( N, RES, 1, DY, 1 )
  391:             CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
  392:      $           INFO )
  393: *
  394: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  395: *
  396:             NORMX = 0.0D+0
  397:             NORMY = 0.0D+0
  398:             NORMDX = 0.0D+0
  399:             DZ_Z = 0.0D+0
  400:             YMIN = HUGEVAL
  401: 
  402:             DO I = 1, N
  403:                YK = ABS( Y( I, J ) )
  404:                DYK = ABS( DY( I ) )
  405: 
  406:                IF ( YK .NE. 0.0D+0 ) THEN
  407:                   DZ_Z = MAX( DZ_Z, DYK / YK )
  408:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  409:                   DZ_Z = HUGEVAL
  410:                END IF
  411: 
  412:                YMIN = MIN( YMIN, YK )
  413: 
  414:                NORMY = MAX( NORMY, YK )
  415: 
  416:                IF ( COLEQU ) THEN
  417:                   NORMX = MAX( NORMX, YK * C( I ) )
  418:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
  419:                ELSE
  420:                   NORMX = NORMY
  421:                   NORMDX = MAX( NORMDX, DYK )
  422:                END IF
  423:             END DO
  424: 
  425:             IF ( NORMX .NE. 0.0D+0 ) THEN
  426:                DX_X = NORMDX / NORMX
  427:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  428:                DX_X = 0.0D+0
  429:             ELSE
  430:                DX_X = HUGEVAL
  431:             END IF
  432: 
  433:             DXRAT = NORMDX / PREVNORMDX
  434:             DZRAT = DZ_Z / PREV_DZ_Z
  435: *
  436: *         Check termination criteria.
  437: *
  438:             IF ( .NOT.IGNORE_CWISE
  439:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  440:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
  441:      $           INCR_PREC = .TRUE.
  442: 
  443:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  444:      $           X_STATE = WORKING_STATE
  445:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
  446:                IF ( DX_X .LE. EPS ) THEN
  447:                   X_STATE = CONV_STATE
  448:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  449:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  450:                      INCR_PREC = .TRUE.
  451:                   ELSE
  452:                      X_STATE = NOPROG_STATE
  453:                   END IF
  454:                ELSE
  455:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  456:                END IF
  457:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  458:             END IF
  459: 
  460:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  461:      $           Z_STATE = WORKING_STATE
  462:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  463:      $           Z_STATE = WORKING_STATE
  464:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  465:                IF ( DZ_Z .LE. EPS ) THEN
  466:                   Z_STATE = CONV_STATE
  467:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  468:                   Z_STATE = UNSTABLE_STATE
  469:                   DZRATMAX = 0.0D+0
  470:                   FINAL_DZ_Z = HUGEVAL
  471:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  472:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  473:                      INCR_PREC = .TRUE.
  474:                   ELSE
  475:                      Z_STATE = NOPROG_STATE
  476:                   END IF
  477:                ELSE
  478:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  479:                END IF
  480:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  481:             END IF
  482: *
  483: *           Exit if both normwise and componentwise stopped working,
  484: *           but if componentwise is unstable, let it go at least two
  485: *           iterations.
  486: *
  487:             IF ( X_STATE.NE.WORKING_STATE ) THEN
  488:                IF ( IGNORE_CWISE ) GOTO 666
  489:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  490:      $              GOTO 666
  491:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  492:             END IF
  493: 
  494:             IF ( INCR_PREC ) THEN
  495:                INCR_PREC = .FALSE.
  496:                Y_PREC_STATE = Y_PREC_STATE + 1
  497:                DO I = 1, N
  498:                   Y_TAIL( I ) = 0.0D+0
  499:                END DO
  500:             END IF
  501: 
  502:             PREVNORMDX = NORMDX
  503:             PREV_DZ_Z = DZ_Z
  504: *
  505: *           Update soluton.
  506: *
  507:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
  508:                CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
  509:             ELSE
  510:                CALL DLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
  511:             END IF
  512: 
  513:          END DO
  514: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
  515:  666     CONTINUE
  516: *
  517: *     Set final_* when cnt hits ithresh.
  518: *
  519:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  520:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  521: *
  522: *     Compute error bounds.
  523: *
  524:          IF ( N_NORMS .GE. 1 ) THEN
  525:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
  526:      $           FINAL_DX_X / (1 - DXRATMAX)
  527:          END IF
  528:          IF (N_NORMS .GE. 2) THEN
  529:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
  530:      $           FINAL_DZ_Z / (1 - DZRATMAX)
  531:          END IF
  532: *
  533: *     Compute componentwise relative backward error from formula
  534: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  535: *     where abs(Z) is the componentwise absolute value of the matrix
  536: *     or vector Z.
  537: *
  538: *        Compute residual RES = B_s - op(A_s) * Y,
  539: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
  540: *
  541:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
  542:          CALL DGBMV(TRANS, N, N, KL, KU, -1.0D+0, AB, LDAB, Y(1,J),
  543:      $        1, 1.0D+0, RES, 1 )
  544: 
  545:          DO I = 1, N
  546:             AYB( I ) = ABS( B( I, J ) )
  547:          END DO
  548: *
  549: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
  550: *
  551:         CALL DLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
  552:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
  553: 
  554:          CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
  555: *
  556: *     End of loop for each RHS
  557: *
  558:       END DO
  559: *
  560:       RETURN
  561:       END

CVSweb interface <joel.bertrand@systella.fr>