Annotation of rpl/lapack/lapack/dla_gbrfsx_extended.f, revision 1.17

1.8       bertrand    1: *> \brief \b DLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.12      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.5       bertrand    7: *
                      8: *> \htmlonly
1.12      bertrand    9: *> Download DLA_GBRFSX_EXTENDED + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f">
1.5       bertrand   15: *> [TXT]</a>
1.12      bertrand   16: *> \endhtmlonly
1.5       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                     22: *                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                     23: *                                       COLEQU, C, B, LDB, Y, LDY,
                     24: *                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                     25: *                                       ERR_BNDS_COMP, RES, AYB, DY,
                     26: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
                     27: *                                       DZ_UB, IGNORE_CWISE, INFO )
1.12      bertrand   28: *
1.5       bertrand   29: *       .. Scalar Arguments ..
                     30: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                     31: *      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                     32: *       LOGICAL            COLEQU, IGNORE_CWISE
                     33: *       DOUBLE PRECISION   RTHRESH, DZ_UB
                     34: *       ..
                     35: *       .. Array Arguments ..
                     36: *       INTEGER            IPIV( * )
                     37: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     38: *      $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
                     39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT(*),
                     40: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     41: *      $                   ERR_BNDS_COMP( NRHS, * )
                     42: *       ..
1.12      bertrand   43: *
1.5       bertrand   44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
1.12      bertrand   50: *>
1.5       bertrand   51: *> DLA_GBRFSX_EXTENDED improves the computed solution to a system of
                     52: *> linear equations by performing extra-precise iterative refinement
                     53: *> and provides error bounds and backward error estimates for the solution.
                     54: *> This subroutine is called by DGBRFSX to perform iterative refinement.
                     55: *> In addition to normwise error bound, the code provides maximum
                     56: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
                     57: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
1.17    ! bertrand   58: *> subroutine is only responsible for setting the second fields of
1.5       bertrand   59: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
                     60: *> \endverbatim
                     61: *
                     62: *  Arguments:
                     63: *  ==========
                     64: *
                     65: *> \param[in] PREC_TYPE
                     66: *> \verbatim
                     67: *>          PREC_TYPE is INTEGER
                     68: *>     Specifies the intermediate precision to be used in refinement.
1.16      bertrand   69: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
                     70: *>          = 'S':  Single
1.5       bertrand   71: *>          = 'D':  Double
                     72: *>          = 'I':  Indigenous
1.16      bertrand   73: *>          = 'X' or 'E':  Extra
1.5       bertrand   74: *> \endverbatim
                     75: *>
                     76: *> \param[in] TRANS_TYPE
                     77: *> \verbatim
                     78: *>          TRANS_TYPE is INTEGER
                     79: *>     Specifies the transposition operation on A.
1.16      bertrand   80: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
                     81: *>          = 'N':  No transpose
1.5       bertrand   82: *>          = 'T':  Transpose
                     83: *>          = 'C':  Conjugate transpose
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] N
                     87: *> \verbatim
                     88: *>          N is INTEGER
                     89: *>     The number of linear equations, i.e., the order of the
                     90: *>     matrix A.  N >= 0.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] KL
                     94: *> \verbatim
                     95: *>          KL is INTEGER
                     96: *>     The number of subdiagonals within the band of A.  KL >= 0.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] KU
                    100: *> \verbatim
                    101: *>          KU is INTEGER
                    102: *>     The number of superdiagonals within the band of A.  KU >= 0
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] NRHS
                    106: *> \verbatim
                    107: *>          NRHS is INTEGER
                    108: *>     The number of right-hand-sides, i.e., the number of columns of the
                    109: *>     matrix B.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] AB
                    113: *> \verbatim
                    114: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
                    115: *>          On entry, the N-by-N matrix AB.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDAB
                    119: *> \verbatim
                    120: *>          LDAB is INTEGER
                    121: *>          The leading dimension of the array AB.  LDBA >= max(1,N).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] AFB
                    125: *> \verbatim
                    126: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
                    127: *>     The factors L and U from the factorization
                    128: *>     A = P*L*U as computed by DGBTRF.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] LDAFB
                    132: *> \verbatim
                    133: *>          LDAFB is INTEGER
                    134: *>     The leading dimension of the array AF.  LDAFB >= max(1,N).
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] IPIV
                    138: *> \verbatim
                    139: *>          IPIV is INTEGER array, dimension (N)
                    140: *>     The pivot indices from the factorization A = P*L*U
                    141: *>     as computed by DGBTRF; row i of the matrix was interchanged
                    142: *>     with row IPIV(i).
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] COLEQU
                    146: *> \verbatim
                    147: *>          COLEQU is LOGICAL
                    148: *>     If .TRUE. then column equilibration was done to A before calling
                    149: *>     this routine. This is needed to compute the solution and error
                    150: *>     bounds correctly.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[in] C
                    154: *> \verbatim
                    155: *>          C is DOUBLE PRECISION array, dimension (N)
                    156: *>     The column scale factors for A. If COLEQU = .FALSE., C
                    157: *>     is not accessed. If C is input, each element of C should be a power
                    158: *>     of the radix to ensure a reliable solution and error estimates.
                    159: *>     Scaling by powers of the radix does not cause rounding errors unless
                    160: *>     the result underflows or overflows. Rounding errors during scaling
                    161: *>     lead to refining with a matrix that is not equivalent to the
                    162: *>     input matrix, producing error estimates that may not be
                    163: *>     reliable.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in] B
                    167: *> \verbatim
                    168: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    169: *>     The right-hand-side matrix B.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[in] LDB
                    173: *> \verbatim
                    174: *>          LDB is INTEGER
                    175: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in,out] Y
                    179: *> \verbatim
1.14      bertrand  180: *>          Y is DOUBLE PRECISION array, dimension (LDY,NRHS)
1.5       bertrand  181: *>     On entry, the solution matrix X, as computed by DGBTRS.
                    182: *>     On exit, the improved solution matrix Y.
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[in] LDY
                    186: *> \verbatim
                    187: *>          LDY is INTEGER
                    188: *>     The leading dimension of the array Y.  LDY >= max(1,N).
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[out] BERR_OUT
                    192: *> \verbatim
                    193: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
                    194: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
                    195: *>     error for right-hand-side j from the formula
                    196: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    197: *>     where abs(Z) is the componentwise absolute value of the matrix
                    198: *>     or vector Z. This is computed by DLA_LIN_BERR.
                    199: *> \endverbatim
                    200: *>
                    201: *> \param[in] N_NORMS
                    202: *> \verbatim
                    203: *>          N_NORMS is INTEGER
                    204: *>     Determines which error bounds to return (see ERR_BNDS_NORM
                    205: *>     and ERR_BNDS_COMP).
                    206: *>     If N_NORMS >= 1 return normwise error bounds.
                    207: *>     If N_NORMS >= 2 return componentwise error bounds.
                    208: *> \endverbatim
                    209: *>
                    210: *> \param[in,out] ERR_BNDS_NORM
                    211: *> \verbatim
1.14      bertrand  212: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1.5       bertrand  213: *>     For each right-hand side, this array contains information about
                    214: *>     various error bounds and condition numbers corresponding to the
                    215: *>     normwise relative error, which is defined as follows:
                    216: *>
                    217: *>     Normwise relative error in the ith solution vector:
                    218: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    219: *>            ------------------------------
                    220: *>                  max_j abs(X(j,i))
                    221: *>
                    222: *>     The array is indexed by the type of error information as described
                    223: *>     below. There currently are up to three pieces of information
                    224: *>     returned.
                    225: *>
                    226: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    227: *>     right-hand side.
                    228: *>
                    229: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    230: *>     three fields:
                    231: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    232: *>              reciprocal condition number is less than the threshold
                    233: *>              sqrt(n) * slamch('Epsilon').
                    234: *>
                    235: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    236: *>              almost certainly within a factor of 10 of the true error
                    237: *>              so long as the next entry is greater than the threshold
                    238: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    239: *>              be trusted if the previous boolean is true.
                    240: *>
                    241: *>     err = 3  Reciprocal condition number: Estimated normwise
                    242: *>              reciprocal condition number.  Compared with the threshold
                    243: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    244: *>              estimate is "guaranteed". These reciprocal condition
                    245: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    246: *>              appropriately scaled matrix Z.
                    247: *>              Let Z = S*A, where S scales each row by a power of the
                    248: *>              radix so all absolute row sums of Z are approximately 1.
                    249: *>
                    250: *>     This subroutine is only responsible for setting the second field
                    251: *>     above.
                    252: *>     See Lapack Working Note 165 for further details and extra
                    253: *>     cautions.
                    254: *> \endverbatim
                    255: *>
                    256: *> \param[in,out] ERR_BNDS_COMP
                    257: *> \verbatim
1.14      bertrand  258: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1.5       bertrand  259: *>     For each right-hand side, this array contains information about
                    260: *>     various error bounds and condition numbers corresponding to the
                    261: *>     componentwise relative error, which is defined as follows:
                    262: *>
                    263: *>     Componentwise relative error in the ith solution vector:
                    264: *>                    abs(XTRUE(j,i) - X(j,i))
                    265: *>             max_j ----------------------
                    266: *>                         abs(X(j,i))
                    267: *>
                    268: *>     The array is indexed by the right-hand side i (on which the
                    269: *>     componentwise relative error depends), and the type of error
                    270: *>     information as described below. There currently are up to three
                    271: *>     pieces of information returned for each right-hand side. If
                    272: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1.16      bertrand  273: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
1.5       bertrand  274: *>     the first (:,N_ERR_BNDS) entries are returned.
                    275: *>
                    276: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    277: *>     right-hand side.
                    278: *>
                    279: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    280: *>     three fields:
                    281: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    282: *>              reciprocal condition number is less than the threshold
                    283: *>              sqrt(n) * slamch('Epsilon').
                    284: *>
                    285: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    286: *>              almost certainly within a factor of 10 of the true error
                    287: *>              so long as the next entry is greater than the threshold
                    288: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    289: *>              be trusted if the previous boolean is true.
                    290: *>
                    291: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    292: *>              reciprocal condition number.  Compared with the threshold
                    293: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    294: *>              estimate is "guaranteed". These reciprocal condition
                    295: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    296: *>              appropriately scaled matrix Z.
                    297: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    298: *>              current right-hand side and S scales each row of
                    299: *>              A*diag(x) by a power of the radix so all absolute row
                    300: *>              sums of Z are approximately 1.
                    301: *>
                    302: *>     This subroutine is only responsible for setting the second field
                    303: *>     above.
                    304: *>     See Lapack Working Note 165 for further details and extra
                    305: *>     cautions.
                    306: *> \endverbatim
                    307: *>
                    308: *> \param[in] RES
                    309: *> \verbatim
                    310: *>          RES is DOUBLE PRECISION array, dimension (N)
                    311: *>     Workspace to hold the intermediate residual.
                    312: *> \endverbatim
                    313: *>
                    314: *> \param[in] AYB
                    315: *> \verbatim
                    316: *>          AYB is DOUBLE PRECISION array, dimension (N)
                    317: *>     Workspace. This can be the same workspace passed for Y_TAIL.
                    318: *> \endverbatim
                    319: *>
                    320: *> \param[in] DY
                    321: *> \verbatim
                    322: *>          DY is DOUBLE PRECISION array, dimension (N)
                    323: *>     Workspace to hold the intermediate solution.
                    324: *> \endverbatim
                    325: *>
                    326: *> \param[in] Y_TAIL
                    327: *> \verbatim
                    328: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
                    329: *>     Workspace to hold the trailing bits of the intermediate solution.
                    330: *> \endverbatim
                    331: *>
                    332: *> \param[in] RCOND
                    333: *> \verbatim
                    334: *>          RCOND is DOUBLE PRECISION
                    335: *>     Reciprocal scaled condition number.  This is an estimate of the
                    336: *>     reciprocal Skeel condition number of the matrix A after
                    337: *>     equilibration (if done).  If this is less than the machine
                    338: *>     precision (in particular, if it is zero), the matrix is singular
                    339: *>     to working precision.  Note that the error may still be small even
                    340: *>     if this number is very small and the matrix appears ill-
                    341: *>     conditioned.
                    342: *> \endverbatim
                    343: *>
                    344: *> \param[in] ITHRESH
                    345: *> \verbatim
                    346: *>          ITHRESH is INTEGER
                    347: *>     The maximum number of residual computations allowed for
                    348: *>     refinement. The default is 10. For 'aggressive' set to 100 to
                    349: *>     permit convergence using approximate factorizations or
                    350: *>     factorizations other than LU. If the factorization uses a
                    351: *>     technique other than Gaussian elimination, the guarantees in
                    352: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
                    353: *> \endverbatim
                    354: *>
                    355: *> \param[in] RTHRESH
                    356: *> \verbatim
                    357: *>          RTHRESH is DOUBLE PRECISION
                    358: *>     Determines when to stop refinement if the error estimate stops
                    359: *>     decreasing. Refinement will stop when the next solution no longer
                    360: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    361: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    362: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    363: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
                    364: *>     for more details.
                    365: *> \endverbatim
                    366: *>
                    367: *> \param[in] DZ_UB
                    368: *> \verbatim
                    369: *>          DZ_UB is DOUBLE PRECISION
                    370: *>     Determines when to start considering componentwise convergence.
                    371: *>     Componentwise convergence is only considered after each component
1.17    ! bertrand  372: *>     of the solution Y is stable, which we define as the relative
1.5       bertrand  373: *>     change in each component being less than DZ_UB. The default value
                    374: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    375: *>     more details.
                    376: *> \endverbatim
                    377: *>
                    378: *> \param[in] IGNORE_CWISE
                    379: *> \verbatim
                    380: *>          IGNORE_CWISE is LOGICAL
                    381: *>     If .TRUE. then ignore componentwise convergence. Default value
                    382: *>     is .FALSE..
                    383: *> \endverbatim
                    384: *>
                    385: *> \param[out] INFO
                    386: *> \verbatim
                    387: *>          INFO is INTEGER
                    388: *>       = 0:  Successful exit.
                    389: *>       < 0:  if INFO = -i, the ith argument to DGBTRS had an illegal
                    390: *>             value
                    391: *> \endverbatim
                    392: *
                    393: *  Authors:
                    394: *  ========
                    395: *
1.12      bertrand  396: *> \author Univ. of Tennessee
                    397: *> \author Univ. of California Berkeley
                    398: *> \author Univ. of Colorado Denver
                    399: *> \author NAG Ltd.
1.5       bertrand  400: *
                    401: *> \ingroup doubleGBcomputational
                    402: *
                    403: *  =====================================================================
1.1       bertrand  404:       SUBROUTINE DLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                    405:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                    406:      $                                COLEQU, C, B, LDB, Y, LDY,
                    407:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                    408:      $                                ERR_BNDS_COMP, RES, AYB, DY,
                    409:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
                    410:      $                                DZ_UB, IGNORE_CWISE, INFO )
                    411: *
1.17    ! bertrand  412: *  -- LAPACK computational routine --
1.5       bertrand  413: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    414: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.1       bertrand  415: *
                    416: *     .. Scalar Arguments ..
                    417:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                    418:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                    419:       LOGICAL            COLEQU, IGNORE_CWISE
                    420:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    421: *     ..
                    422: *     .. Array Arguments ..
                    423:       INTEGER            IPIV( * )
                    424:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    425:      $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
                    426:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT(*),
                    427:      $                   ERR_BNDS_NORM( NRHS, * ),
                    428:      $                   ERR_BNDS_COMP( NRHS, * )
                    429: *     ..
                    430: *
                    431: *  =====================================================================
                    432: *
                    433: *     .. Local Scalars ..
                    434:       CHARACTER          TRANS
                    435:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
                    436:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    437:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    438:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    439:      $                   EPS, HUGEVAL, INCR_THRESH
                    440:       LOGICAL            INCR_PREC
                    441: *     ..
                    442: *     .. Parameters ..
                    443:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    444:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    445:      $                   EXTRA_Y
                    446:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    447:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    448:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    449:      $                   EXTRA_Y = 2 )
                    450:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    451:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    452:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    453:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    454:      $                   BERR_I = 3 )
                    455:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    456:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    457:      $                   PIV_GROWTH_I = 9 )
                    458:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    459:      $                   LA_LINRX_CWISE_I
                    460:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    461:      $                   LA_LINRX_ITHRESH_I = 2 )
                    462:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    463:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    464:      $                   LA_LINRX_RCOND_I
                    465:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    466:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    467: *     ..
                    468: *     .. External Subroutines ..
                    469:       EXTERNAL           DAXPY, DCOPY, DGBTRS, DGBMV, BLAS_DGBMV_X,
                    470:      $                   BLAS_DGBMV2_X, DLA_GBAMV, DLA_WWADDW, DLAMCH,
                    471:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
                    472:       DOUBLE PRECISION   DLAMCH
                    473:       CHARACTER          CHLA_TRANSTYPE
                    474: *     ..
                    475: *     .. Intrinsic Functions ..
                    476:       INTRINSIC          ABS, MAX, MIN
                    477: *     ..
                    478: *     .. Executable Statements ..
                    479: *
                    480:       IF (INFO.NE.0) RETURN
                    481:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
                    482:       EPS = DLAMCH( 'Epsilon' )
                    483:       HUGEVAL = DLAMCH( 'Overflow' )
                    484: *     Force HUGEVAL to Inf
                    485:       HUGEVAL = HUGEVAL * HUGEVAL
                    486: *     Using HUGEVAL may lead to spurious underflows.
                    487:       INCR_THRESH = DBLE( N ) * EPS
                    488:       M = KL+KU+1
                    489: 
                    490:       DO J = 1, NRHS
                    491:          Y_PREC_STATE = EXTRA_RESIDUAL
                    492:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    493:             DO I = 1, N
                    494:                Y_TAIL( I ) = 0.0D+0
                    495:             END DO
                    496:          END IF
                    497: 
                    498:          DXRAT = 0.0D+0
                    499:          DXRATMAX = 0.0D+0
                    500:          DZRAT = 0.0D+0
                    501:          DZRATMAX = 0.0D+0
                    502:          FINAL_DX_X = HUGEVAL
                    503:          FINAL_DZ_Z = HUGEVAL
                    504:          PREVNORMDX = HUGEVAL
                    505:          PREV_DZ_Z = HUGEVAL
                    506:          DZ_Z = HUGEVAL
                    507:          DX_X = HUGEVAL
                    508: 
                    509:          X_STATE = WORKING_STATE
                    510:          Z_STATE = UNSTABLE_STATE
                    511:          INCR_PREC = .FALSE.
                    512: 
                    513:          DO CNT = 1, ITHRESH
                    514: *
                    515: *        Compute residual RES = B_s - op(A_s) * Y,
                    516: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    517: *
                    518:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    519:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    520:                CALL DGBMV( TRANS, M, N, KL, KU, -1.0D+0, AB, LDAB,
                    521:      $              Y( 1, J ), 1, 1.0D+0, RES, 1 )
                    522:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    523:                CALL BLAS_DGBMV_X( TRANS_TYPE, N, N, KL, KU,
                    524:      $              -1.0D+0, AB, LDAB, Y( 1, J ), 1, 1.0D+0, RES, 1,
                    525:      $              PREC_TYPE )
                    526:             ELSE
                    527:                CALL BLAS_DGBMV2_X( TRANS_TYPE, N, N, KL, KU, -1.0D+0,
                    528:      $              AB, LDAB, Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1,
                    529:      $              PREC_TYPE )
                    530:             END IF
                    531: 
                    532: !        XXX: RES is no longer needed.
                    533:             CALL DCOPY( N, RES, 1, DY, 1 )
                    534:             CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
                    535:      $           INFO )
                    536: *
                    537: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    538: *
                    539:             NORMX = 0.0D+0
                    540:             NORMY = 0.0D+0
                    541:             NORMDX = 0.0D+0
                    542:             DZ_Z = 0.0D+0
                    543:             YMIN = HUGEVAL
                    544: 
                    545:             DO I = 1, N
                    546:                YK = ABS( Y( I, J ) )
                    547:                DYK = ABS( DY( I ) )
                    548: 
                    549:                IF ( YK .NE. 0.0D+0 ) THEN
                    550:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    551:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    552:                   DZ_Z = HUGEVAL
                    553:                END IF
                    554: 
                    555:                YMIN = MIN( YMIN, YK )
                    556: 
                    557:                NORMY = MAX( NORMY, YK )
                    558: 
                    559:                IF ( COLEQU ) THEN
                    560:                   NORMX = MAX( NORMX, YK * C( I ) )
                    561:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
                    562:                ELSE
                    563:                   NORMX = NORMY
                    564:                   NORMDX = MAX( NORMDX, DYK )
                    565:                END IF
                    566:             END DO
                    567: 
                    568:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    569:                DX_X = NORMDX / NORMX
                    570:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    571:                DX_X = 0.0D+0
                    572:             ELSE
                    573:                DX_X = HUGEVAL
                    574:             END IF
                    575: 
                    576:             DXRAT = NORMDX / PREVNORMDX
                    577:             DZRAT = DZ_Z / PREV_DZ_Z
                    578: *
                    579: *         Check termination criteria.
                    580: *
                    581:             IF ( .NOT.IGNORE_CWISE
                    582:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
                    583:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
                    584:      $           INCR_PREC = .TRUE.
                    585: 
                    586:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    587:      $           X_STATE = WORKING_STATE
                    588:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    589:                IF ( DX_X .LE. EPS ) THEN
                    590:                   X_STATE = CONV_STATE
                    591:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    592:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    593:                      INCR_PREC = .TRUE.
                    594:                   ELSE
                    595:                      X_STATE = NOPROG_STATE
                    596:                   END IF
                    597:                ELSE
                    598:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    599:                END IF
                    600:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    601:             END IF
                    602: 
                    603:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    604:      $           Z_STATE = WORKING_STATE
                    605:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    606:      $           Z_STATE = WORKING_STATE
                    607:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    608:                IF ( DZ_Z .LE. EPS ) THEN
                    609:                   Z_STATE = CONV_STATE
                    610:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    611:                   Z_STATE = UNSTABLE_STATE
                    612:                   DZRATMAX = 0.0D+0
                    613:                   FINAL_DZ_Z = HUGEVAL
                    614:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    615:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    616:                      INCR_PREC = .TRUE.
                    617:                   ELSE
                    618:                      Z_STATE = NOPROG_STATE
                    619:                   END IF
                    620:                ELSE
                    621:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    622:                END IF
                    623:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    624:             END IF
                    625: *
                    626: *           Exit if both normwise and componentwise stopped working,
                    627: *           but if componentwise is unstable, let it go at least two
                    628: *           iterations.
                    629: *
                    630:             IF ( X_STATE.NE.WORKING_STATE ) THEN
                    631:                IF ( IGNORE_CWISE ) GOTO 666
                    632:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
                    633:      $              GOTO 666
                    634:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
                    635:             END IF
                    636: 
                    637:             IF ( INCR_PREC ) THEN
                    638:                INCR_PREC = .FALSE.
                    639:                Y_PREC_STATE = Y_PREC_STATE + 1
                    640:                DO I = 1, N
                    641:                   Y_TAIL( I ) = 0.0D+0
                    642:                END DO
                    643:             END IF
                    644: 
                    645:             PREVNORMDX = NORMDX
                    646:             PREV_DZ_Z = DZ_Z
                    647: *
                    648: *           Update soluton.
                    649: *
                    650:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
                    651:                CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
                    652:             ELSE
                    653:                CALL DLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
                    654:             END IF
                    655: 
                    656:          END DO
                    657: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    658:  666     CONTINUE
                    659: *
                    660: *     Set final_* when cnt hits ithresh.
                    661: *
                    662:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    663:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    664: *
                    665: *     Compute error bounds.
                    666: *
                    667:          IF ( N_NORMS .GE. 1 ) THEN
                    668:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
                    669:      $           FINAL_DX_X / (1 - DXRATMAX)
                    670:          END IF
                    671:          IF (N_NORMS .GE. 2) THEN
                    672:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
                    673:      $           FINAL_DZ_Z / (1 - DZRATMAX)
                    674:          END IF
                    675: *
                    676: *     Compute componentwise relative backward error from formula
                    677: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    678: *     where abs(Z) is the componentwise absolute value of the matrix
                    679: *     or vector Z.
                    680: *
                    681: *        Compute residual RES = B_s - op(A_s) * Y,
                    682: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    683: *
                    684:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    685:          CALL DGBMV(TRANS, N, N, KL, KU, -1.0D+0, AB, LDAB, Y(1,J),
                    686:      $        1, 1.0D+0, RES, 1 )
                    687: 
                    688:          DO I = 1, N
                    689:             AYB( I ) = ABS( B( I, J ) )
                    690:          END DO
                    691: *
                    692: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    693: *
                    694:         CALL DLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
                    695:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    696: 
                    697:          CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    698: *
                    699: *     End of loop for each RHS
                    700: *
                    701:       END DO
                    702: *
                    703:       RETURN
1.17    ! bertrand  704: *
        !           705: *     End of DLA_GBRFSX_EXTENDED
        !           706: *
1.1       bertrand  707:       END

CVSweb interface <joel.bertrand@systella.fr>