Annotation of rpl/lapack/lapack/dla_gbrfsx_extended.f, revision 1.10

1.8       bertrand    1: *> \brief \b DLA_GBRFSX_EXTENDED improves the computed solution to a system of linear equations for general banded matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
1.5       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DLA_GBRFSX_EXTENDED + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gbrfsx_extended.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                     22: *                                       NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                     23: *                                       COLEQU, C, B, LDB, Y, LDY,
                     24: *                                       BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                     25: *                                       ERR_BNDS_COMP, RES, AYB, DY,
                     26: *                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
                     27: *                                       DZ_UB, IGNORE_CWISE, INFO )
                     28: * 
                     29: *       .. Scalar Arguments ..
                     30: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                     31: *      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                     32: *       LOGICAL            COLEQU, IGNORE_CWISE
                     33: *       DOUBLE PRECISION   RTHRESH, DZ_UB
                     34: *       ..
                     35: *       .. Array Arguments ..
                     36: *       INTEGER            IPIV( * )
                     37: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     38: *      $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
                     39: *       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT(*),
                     40: *      $                   ERR_BNDS_NORM( NRHS, * ),
                     41: *      $                   ERR_BNDS_COMP( NRHS, * )
                     42: *       ..
                     43: *  
                     44: *
                     45: *> \par Purpose:
                     46: *  =============
                     47: *>
                     48: *> \verbatim
                     49: *>
                     50: *> 
                     51: *> DLA_GBRFSX_EXTENDED improves the computed solution to a system of
                     52: *> linear equations by performing extra-precise iterative refinement
                     53: *> and provides error bounds and backward error estimates for the solution.
                     54: *> This subroutine is called by DGBRFSX to perform iterative refinement.
                     55: *> In addition to normwise error bound, the code provides maximum
                     56: *> componentwise error bound if possible. See comments for ERR_BNDS_NORM
                     57: *> and ERR_BNDS_COMP for details of the error bounds. Note that this
                     58: *> subroutine is only resonsible for setting the second fields of
                     59: *> ERR_BNDS_NORM and ERR_BNDS_COMP.
                     60: *> \endverbatim
                     61: *
                     62: *  Arguments:
                     63: *  ==========
                     64: *
                     65: *> \param[in] PREC_TYPE
                     66: *> \verbatim
                     67: *>          PREC_TYPE is INTEGER
                     68: *>     Specifies the intermediate precision to be used in refinement.
                     69: *>     The value is defined by ILAPREC(P) where P is a CHARACTER and
                     70: *>     P    = 'S':  Single
                     71: *>          = 'D':  Double
                     72: *>          = 'I':  Indigenous
                     73: *>          = 'X', 'E':  Extra
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] TRANS_TYPE
                     77: *> \verbatim
                     78: *>          TRANS_TYPE is INTEGER
                     79: *>     Specifies the transposition operation on A.
                     80: *>     The value is defined by ILATRANS(T) where T is a CHARACTER and
                     81: *>     T    = 'N':  No transpose
                     82: *>          = 'T':  Transpose
                     83: *>          = 'C':  Conjugate transpose
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] N
                     87: *> \verbatim
                     88: *>          N is INTEGER
                     89: *>     The number of linear equations, i.e., the order of the
                     90: *>     matrix A.  N >= 0.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] KL
                     94: *> \verbatim
                     95: *>          KL is INTEGER
                     96: *>     The number of subdiagonals within the band of A.  KL >= 0.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] KU
                    100: *> \verbatim
                    101: *>          KU is INTEGER
                    102: *>     The number of superdiagonals within the band of A.  KU >= 0
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] NRHS
                    106: *> \verbatim
                    107: *>          NRHS is INTEGER
                    108: *>     The number of right-hand-sides, i.e., the number of columns of the
                    109: *>     matrix B.
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] AB
                    113: *> \verbatim
                    114: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
                    115: *>          On entry, the N-by-N matrix AB.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDAB
                    119: *> \verbatim
                    120: *>          LDAB is INTEGER
                    121: *>          The leading dimension of the array AB.  LDBA >= max(1,N).
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] AFB
                    125: *> \verbatim
                    126: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
                    127: *>     The factors L and U from the factorization
                    128: *>     A = P*L*U as computed by DGBTRF.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] LDAFB
                    132: *> \verbatim
                    133: *>          LDAFB is INTEGER
                    134: *>     The leading dimension of the array AF.  LDAFB >= max(1,N).
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] IPIV
                    138: *> \verbatim
                    139: *>          IPIV is INTEGER array, dimension (N)
                    140: *>     The pivot indices from the factorization A = P*L*U
                    141: *>     as computed by DGBTRF; row i of the matrix was interchanged
                    142: *>     with row IPIV(i).
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] COLEQU
                    146: *> \verbatim
                    147: *>          COLEQU is LOGICAL
                    148: *>     If .TRUE. then column equilibration was done to A before calling
                    149: *>     this routine. This is needed to compute the solution and error
                    150: *>     bounds correctly.
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[in] C
                    154: *> \verbatim
                    155: *>          C is DOUBLE PRECISION array, dimension (N)
                    156: *>     The column scale factors for A. If COLEQU = .FALSE., C
                    157: *>     is not accessed. If C is input, each element of C should be a power
                    158: *>     of the radix to ensure a reliable solution and error estimates.
                    159: *>     Scaling by powers of the radix does not cause rounding errors unless
                    160: *>     the result underflows or overflows. Rounding errors during scaling
                    161: *>     lead to refining with a matrix that is not equivalent to the
                    162: *>     input matrix, producing error estimates that may not be
                    163: *>     reliable.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[in] B
                    167: *> \verbatim
                    168: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    169: *>     The right-hand-side matrix B.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[in] LDB
                    173: *> \verbatim
                    174: *>          LDB is INTEGER
                    175: *>     The leading dimension of the array B.  LDB >= max(1,N).
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in,out] Y
                    179: *> \verbatim
                    180: *>          Y is DOUBLE PRECISION array, dimension
                    181: *>                    (LDY,NRHS)
                    182: *>     On entry, the solution matrix X, as computed by DGBTRS.
                    183: *>     On exit, the improved solution matrix Y.
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[in] LDY
                    187: *> \verbatim
                    188: *>          LDY is INTEGER
                    189: *>     The leading dimension of the array Y.  LDY >= max(1,N).
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[out] BERR_OUT
                    193: *> \verbatim
                    194: *>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
                    195: *>     On exit, BERR_OUT(j) contains the componentwise relative backward
                    196: *>     error for right-hand-side j from the formula
                    197: *>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    198: *>     where abs(Z) is the componentwise absolute value of the matrix
                    199: *>     or vector Z. This is computed by DLA_LIN_BERR.
                    200: *> \endverbatim
                    201: *>
                    202: *> \param[in] N_NORMS
                    203: *> \verbatim
                    204: *>          N_NORMS is INTEGER
                    205: *>     Determines which error bounds to return (see ERR_BNDS_NORM
                    206: *>     and ERR_BNDS_COMP).
                    207: *>     If N_NORMS >= 1 return normwise error bounds.
                    208: *>     If N_NORMS >= 2 return componentwise error bounds.
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[in,out] ERR_BNDS_NORM
                    212: *> \verbatim
                    213: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
                    214: *>                    (NRHS, N_ERR_BNDS)
                    215: *>     For each right-hand side, this array contains information about
                    216: *>     various error bounds and condition numbers corresponding to the
                    217: *>     normwise relative error, which is defined as follows:
                    218: *>
                    219: *>     Normwise relative error in the ith solution vector:
                    220: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
                    221: *>            ------------------------------
                    222: *>                  max_j abs(X(j,i))
                    223: *>
                    224: *>     The array is indexed by the type of error information as described
                    225: *>     below. There currently are up to three pieces of information
                    226: *>     returned.
                    227: *>
                    228: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
                    229: *>     right-hand side.
                    230: *>
                    231: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
                    232: *>     three fields:
                    233: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    234: *>              reciprocal condition number is less than the threshold
                    235: *>              sqrt(n) * slamch('Epsilon').
                    236: *>
                    237: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    238: *>              almost certainly within a factor of 10 of the true error
                    239: *>              so long as the next entry is greater than the threshold
                    240: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    241: *>              be trusted if the previous boolean is true.
                    242: *>
                    243: *>     err = 3  Reciprocal condition number: Estimated normwise
                    244: *>              reciprocal condition number.  Compared with the threshold
                    245: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    246: *>              estimate is "guaranteed". These reciprocal condition
                    247: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    248: *>              appropriately scaled matrix Z.
                    249: *>              Let Z = S*A, where S scales each row by a power of the
                    250: *>              radix so all absolute row sums of Z are approximately 1.
                    251: *>
                    252: *>     This subroutine is only responsible for setting the second field
                    253: *>     above.
                    254: *>     See Lapack Working Note 165 for further details and extra
                    255: *>     cautions.
                    256: *> \endverbatim
                    257: *>
                    258: *> \param[in,out] ERR_BNDS_COMP
                    259: *> \verbatim
                    260: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
                    261: *>                    (NRHS, N_ERR_BNDS)
                    262: *>     For each right-hand side, this array contains information about
                    263: *>     various error bounds and condition numbers corresponding to the
                    264: *>     componentwise relative error, which is defined as follows:
                    265: *>
                    266: *>     Componentwise relative error in the ith solution vector:
                    267: *>                    abs(XTRUE(j,i) - X(j,i))
                    268: *>             max_j ----------------------
                    269: *>                         abs(X(j,i))
                    270: *>
                    271: *>     The array is indexed by the right-hand side i (on which the
                    272: *>     componentwise relative error depends), and the type of error
                    273: *>     information as described below. There currently are up to three
                    274: *>     pieces of information returned for each right-hand side. If
                    275: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
                    276: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
                    277: *>     the first (:,N_ERR_BNDS) entries are returned.
                    278: *>
                    279: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
                    280: *>     right-hand side.
                    281: *>
                    282: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
                    283: *>     three fields:
                    284: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
                    285: *>              reciprocal condition number is less than the threshold
                    286: *>              sqrt(n) * slamch('Epsilon').
                    287: *>
                    288: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
                    289: *>              almost certainly within a factor of 10 of the true error
                    290: *>              so long as the next entry is greater than the threshold
                    291: *>              sqrt(n) * slamch('Epsilon'). This error bound should only
                    292: *>              be trusted if the previous boolean is true.
                    293: *>
                    294: *>     err = 3  Reciprocal condition number: Estimated componentwise
                    295: *>              reciprocal condition number.  Compared with the threshold
                    296: *>              sqrt(n) * slamch('Epsilon') to determine if the error
                    297: *>              estimate is "guaranteed". These reciprocal condition
                    298: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
                    299: *>              appropriately scaled matrix Z.
                    300: *>              Let Z = S*(A*diag(x)), where x is the solution for the
                    301: *>              current right-hand side and S scales each row of
                    302: *>              A*diag(x) by a power of the radix so all absolute row
                    303: *>              sums of Z are approximately 1.
                    304: *>
                    305: *>     This subroutine is only responsible for setting the second field
                    306: *>     above.
                    307: *>     See Lapack Working Note 165 for further details and extra
                    308: *>     cautions.
                    309: *> \endverbatim
                    310: *>
                    311: *> \param[in] RES
                    312: *> \verbatim
                    313: *>          RES is DOUBLE PRECISION array, dimension (N)
                    314: *>     Workspace to hold the intermediate residual.
                    315: *> \endverbatim
                    316: *>
                    317: *> \param[in] AYB
                    318: *> \verbatim
                    319: *>          AYB is DOUBLE PRECISION array, dimension (N)
                    320: *>     Workspace. This can be the same workspace passed for Y_TAIL.
                    321: *> \endverbatim
                    322: *>
                    323: *> \param[in] DY
                    324: *> \verbatim
                    325: *>          DY is DOUBLE PRECISION array, dimension (N)
                    326: *>     Workspace to hold the intermediate solution.
                    327: *> \endverbatim
                    328: *>
                    329: *> \param[in] Y_TAIL
                    330: *> \verbatim
                    331: *>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
                    332: *>     Workspace to hold the trailing bits of the intermediate solution.
                    333: *> \endverbatim
                    334: *>
                    335: *> \param[in] RCOND
                    336: *> \verbatim
                    337: *>          RCOND is DOUBLE PRECISION
                    338: *>     Reciprocal scaled condition number.  This is an estimate of the
                    339: *>     reciprocal Skeel condition number of the matrix A after
                    340: *>     equilibration (if done).  If this is less than the machine
                    341: *>     precision (in particular, if it is zero), the matrix is singular
                    342: *>     to working precision.  Note that the error may still be small even
                    343: *>     if this number is very small and the matrix appears ill-
                    344: *>     conditioned.
                    345: *> \endverbatim
                    346: *>
                    347: *> \param[in] ITHRESH
                    348: *> \verbatim
                    349: *>          ITHRESH is INTEGER
                    350: *>     The maximum number of residual computations allowed for
                    351: *>     refinement. The default is 10. For 'aggressive' set to 100 to
                    352: *>     permit convergence using approximate factorizations or
                    353: *>     factorizations other than LU. If the factorization uses a
                    354: *>     technique other than Gaussian elimination, the guarantees in
                    355: *>     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
                    356: *> \endverbatim
                    357: *>
                    358: *> \param[in] RTHRESH
                    359: *> \verbatim
                    360: *>          RTHRESH is DOUBLE PRECISION
                    361: *>     Determines when to stop refinement if the error estimate stops
                    362: *>     decreasing. Refinement will stop when the next solution no longer
                    363: *>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
                    364: *>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
                    365: *>     default value is 0.5. For 'aggressive' set to 0.9 to permit
                    366: *>     convergence on extremely ill-conditioned matrices. See LAWN 165
                    367: *>     for more details.
                    368: *> \endverbatim
                    369: *>
                    370: *> \param[in] DZ_UB
                    371: *> \verbatim
                    372: *>          DZ_UB is DOUBLE PRECISION
                    373: *>     Determines when to start considering componentwise convergence.
                    374: *>     Componentwise convergence is only considered after each component
                    375: *>     of the solution Y is stable, which we definte as the relative
                    376: *>     change in each component being less than DZ_UB. The default value
                    377: *>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
                    378: *>     more details.
                    379: *> \endverbatim
                    380: *>
                    381: *> \param[in] IGNORE_CWISE
                    382: *> \verbatim
                    383: *>          IGNORE_CWISE is LOGICAL
                    384: *>     If .TRUE. then ignore componentwise convergence. Default value
                    385: *>     is .FALSE..
                    386: *> \endverbatim
                    387: *>
                    388: *> \param[out] INFO
                    389: *> \verbatim
                    390: *>          INFO is INTEGER
                    391: *>       = 0:  Successful exit.
                    392: *>       < 0:  if INFO = -i, the ith argument to DGBTRS had an illegal
                    393: *>             value
                    394: *> \endverbatim
                    395: *
                    396: *  Authors:
                    397: *  ========
                    398: *
                    399: *> \author Univ. of Tennessee 
                    400: *> \author Univ. of California Berkeley 
                    401: *> \author Univ. of Colorado Denver 
                    402: *> \author NAG Ltd. 
                    403: *
1.8       bertrand  404: *> \date September 2012
1.5       bertrand  405: *
                    406: *> \ingroup doubleGBcomputational
                    407: *
                    408: *  =====================================================================
1.1       bertrand  409:       SUBROUTINE DLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, KL, KU,
                    410:      $                                NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                    411:      $                                COLEQU, C, B, LDB, Y, LDY,
                    412:      $                                BERR_OUT, N_NORMS, ERR_BNDS_NORM,
                    413:      $                                ERR_BNDS_COMP, RES, AYB, DY,
                    414:      $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
                    415:      $                                DZ_UB, IGNORE_CWISE, INFO )
                    416: *
1.8       bertrand  417: *  -- LAPACK computational routine (version 3.4.2) --
1.5       bertrand  418: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    419: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  420: *     September 2012
1.1       bertrand  421: *
                    422: *     .. Scalar Arguments ..
                    423:       INTEGER            INFO, LDAB, LDAFB, LDB, LDY, N, KL, KU, NRHS,
                    424:      $                   PREC_TYPE, TRANS_TYPE, N_NORMS, ITHRESH
                    425:       LOGICAL            COLEQU, IGNORE_CWISE
                    426:       DOUBLE PRECISION   RTHRESH, DZ_UB
                    427: *     ..
                    428: *     .. Array Arguments ..
                    429:       INTEGER            IPIV( * )
                    430:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    431:      $                   Y( LDY, * ), RES(*), DY(*), Y_TAIL(*)
                    432:       DOUBLE PRECISION   C( * ), AYB(*), RCOND, BERR_OUT(*),
                    433:      $                   ERR_BNDS_NORM( NRHS, * ),
                    434:      $                   ERR_BNDS_COMP( NRHS, * )
                    435: *     ..
                    436: *
                    437: *  =====================================================================
                    438: *
                    439: *     .. Local Scalars ..
                    440:       CHARACTER          TRANS
                    441:       INTEGER            CNT, I, J, M, X_STATE, Z_STATE, Y_PREC_STATE
                    442:       DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
                    443:      $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
                    444:      $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
                    445:      $                   EPS, HUGEVAL, INCR_THRESH
                    446:       LOGICAL            INCR_PREC
                    447: *     ..
                    448: *     .. Parameters ..
                    449:       INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
                    450:      $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
                    451:      $                   EXTRA_Y
                    452:       PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
                    453:      $                   CONV_STATE = 2, NOPROG_STATE = 3 )
                    454:       PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
                    455:      $                   EXTRA_Y = 2 )
                    456:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    457:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    458:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    459:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    460:      $                   BERR_I = 3 )
                    461:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    462:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    463:      $                   PIV_GROWTH_I = 9 )
                    464:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
                    465:      $                   LA_LINRX_CWISE_I
                    466:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
                    467:      $                   LA_LINRX_ITHRESH_I = 2 )
                    468:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
                    469:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
                    470:      $                   LA_LINRX_RCOND_I
                    471:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
                    472:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
                    473: *     ..
                    474: *     .. External Subroutines ..
                    475:       EXTERNAL           DAXPY, DCOPY, DGBTRS, DGBMV, BLAS_DGBMV_X,
                    476:      $                   BLAS_DGBMV2_X, DLA_GBAMV, DLA_WWADDW, DLAMCH,
                    477:      $                   CHLA_TRANSTYPE, DLA_LIN_BERR
                    478:       DOUBLE PRECISION   DLAMCH
                    479:       CHARACTER          CHLA_TRANSTYPE
                    480: *     ..
                    481: *     .. Intrinsic Functions ..
                    482:       INTRINSIC          ABS, MAX, MIN
                    483: *     ..
                    484: *     .. Executable Statements ..
                    485: *
                    486:       IF (INFO.NE.0) RETURN
                    487:       TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
                    488:       EPS = DLAMCH( 'Epsilon' )
                    489:       HUGEVAL = DLAMCH( 'Overflow' )
                    490: *     Force HUGEVAL to Inf
                    491:       HUGEVAL = HUGEVAL * HUGEVAL
                    492: *     Using HUGEVAL may lead to spurious underflows.
                    493:       INCR_THRESH = DBLE( N ) * EPS
                    494:       M = KL+KU+1
                    495: 
                    496:       DO J = 1, NRHS
                    497:          Y_PREC_STATE = EXTRA_RESIDUAL
                    498:          IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
                    499:             DO I = 1, N
                    500:                Y_TAIL( I ) = 0.0D+0
                    501:             END DO
                    502:          END IF
                    503: 
                    504:          DXRAT = 0.0D+0
                    505:          DXRATMAX = 0.0D+0
                    506:          DZRAT = 0.0D+0
                    507:          DZRATMAX = 0.0D+0
                    508:          FINAL_DX_X = HUGEVAL
                    509:          FINAL_DZ_Z = HUGEVAL
                    510:          PREVNORMDX = HUGEVAL
                    511:          PREV_DZ_Z = HUGEVAL
                    512:          DZ_Z = HUGEVAL
                    513:          DX_X = HUGEVAL
                    514: 
                    515:          X_STATE = WORKING_STATE
                    516:          Z_STATE = UNSTABLE_STATE
                    517:          INCR_PREC = .FALSE.
                    518: 
                    519:          DO CNT = 1, ITHRESH
                    520: *
                    521: *        Compute residual RES = B_s - op(A_s) * Y,
                    522: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    523: *
                    524:             CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    525:             IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
                    526:                CALL DGBMV( TRANS, M, N, KL, KU, -1.0D+0, AB, LDAB,
                    527:      $              Y( 1, J ), 1, 1.0D+0, RES, 1 )
                    528:             ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
                    529:                CALL BLAS_DGBMV_X( TRANS_TYPE, N, N, KL, KU,
                    530:      $              -1.0D+0, AB, LDAB, Y( 1, J ), 1, 1.0D+0, RES, 1,
                    531:      $              PREC_TYPE )
                    532:             ELSE
                    533:                CALL BLAS_DGBMV2_X( TRANS_TYPE, N, N, KL, KU, -1.0D+0,
                    534:      $              AB, LDAB, Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1,
                    535:      $              PREC_TYPE )
                    536:             END IF
                    537: 
                    538: !        XXX: RES is no longer needed.
                    539:             CALL DCOPY( N, RES, 1, DY, 1 )
                    540:             CALL DGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, DY, N,
                    541:      $           INFO )
                    542: *
                    543: *         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
                    544: *
                    545:             NORMX = 0.0D+0
                    546:             NORMY = 0.0D+0
                    547:             NORMDX = 0.0D+0
                    548:             DZ_Z = 0.0D+0
                    549:             YMIN = HUGEVAL
                    550: 
                    551:             DO I = 1, N
                    552:                YK = ABS( Y( I, J ) )
                    553:                DYK = ABS( DY( I ) )
                    554: 
                    555:                IF ( YK .NE. 0.0D+0 ) THEN
                    556:                   DZ_Z = MAX( DZ_Z, DYK / YK )
                    557:                ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                    558:                   DZ_Z = HUGEVAL
                    559:                END IF
                    560: 
                    561:                YMIN = MIN( YMIN, YK )
                    562: 
                    563:                NORMY = MAX( NORMY, YK )
                    564: 
                    565:                IF ( COLEQU ) THEN
                    566:                   NORMX = MAX( NORMX, YK * C( I ) )
                    567:                   NORMDX = MAX( NORMDX, DYK * C( I ) )
                    568:                ELSE
                    569:                   NORMX = NORMY
                    570:                   NORMDX = MAX( NORMDX, DYK )
                    571:                END IF
                    572:             END DO
                    573: 
                    574:             IF ( NORMX .NE. 0.0D+0 ) THEN
                    575:                DX_X = NORMDX / NORMX
                    576:             ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
                    577:                DX_X = 0.0D+0
                    578:             ELSE
                    579:                DX_X = HUGEVAL
                    580:             END IF
                    581: 
                    582:             DXRAT = NORMDX / PREVNORMDX
                    583:             DZRAT = DZ_Z / PREV_DZ_Z
                    584: *
                    585: *         Check termination criteria.
                    586: *
                    587:             IF ( .NOT.IGNORE_CWISE
                    588:      $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
                    589:      $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
                    590:      $           INCR_PREC = .TRUE.
                    591: 
                    592:             IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
                    593:      $           X_STATE = WORKING_STATE
                    594:             IF ( X_STATE .EQ. WORKING_STATE ) THEN
                    595:                IF ( DX_X .LE. EPS ) THEN
                    596:                   X_STATE = CONV_STATE
                    597:                ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                    598:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    599:                      INCR_PREC = .TRUE.
                    600:                   ELSE
                    601:                      X_STATE = NOPROG_STATE
                    602:                   END IF
                    603:                ELSE
                    604:                   IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
                    605:                END IF
                    606:                IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
                    607:             END IF
                    608: 
                    609:             IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
                    610:      $           Z_STATE = WORKING_STATE
                    611:             IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
                    612:      $           Z_STATE = WORKING_STATE
                    613:             IF ( Z_STATE .EQ. WORKING_STATE ) THEN
                    614:                IF ( DZ_Z .LE. EPS ) THEN
                    615:                   Z_STATE = CONV_STATE
                    616:                ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                    617:                   Z_STATE = UNSTABLE_STATE
                    618:                   DZRATMAX = 0.0D+0
                    619:                   FINAL_DZ_Z = HUGEVAL
                    620:                ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                    621:                   IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                    622:                      INCR_PREC = .TRUE.
                    623:                   ELSE
                    624:                      Z_STATE = NOPROG_STATE
                    625:                   END IF
                    626:                ELSE
                    627:                   IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
                    628:                END IF
                    629:                IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    630:             END IF
                    631: *
                    632: *           Exit if both normwise and componentwise stopped working,
                    633: *           but if componentwise is unstable, let it go at least two
                    634: *           iterations.
                    635: *
                    636:             IF ( X_STATE.NE.WORKING_STATE ) THEN
                    637:                IF ( IGNORE_CWISE ) GOTO 666
                    638:                IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
                    639:      $              GOTO 666
                    640:                IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
                    641:             END IF
                    642: 
                    643:             IF ( INCR_PREC ) THEN
                    644:                INCR_PREC = .FALSE.
                    645:                Y_PREC_STATE = Y_PREC_STATE + 1
                    646:                DO I = 1, N
                    647:                   Y_TAIL( I ) = 0.0D+0
                    648:                END DO
                    649:             END IF
                    650: 
                    651:             PREVNORMDX = NORMDX
                    652:             PREV_DZ_Z = DZ_Z
                    653: *
                    654: *           Update soluton.
                    655: *
                    656:             IF (Y_PREC_STATE .LT. EXTRA_Y) THEN
                    657:                CALL DAXPY( N, 1.0D+0, DY, 1, Y(1,J), 1 )
                    658:             ELSE
                    659:                CALL DLA_WWADDW( N, Y(1,J), Y_TAIL, DY )
                    660:             END IF
                    661: 
                    662:          END DO
                    663: *        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
                    664:  666     CONTINUE
                    665: *
                    666: *     Set final_* when cnt hits ithresh.
                    667: *
                    668:          IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
                    669:          IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
                    670: *
                    671: *     Compute error bounds.
                    672: *
                    673:          IF ( N_NORMS .GE. 1 ) THEN
                    674:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) =
                    675:      $           FINAL_DX_X / (1 - DXRATMAX)
                    676:          END IF
                    677:          IF (N_NORMS .GE. 2) THEN
                    678:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) =
                    679:      $           FINAL_DZ_Z / (1 - DZRATMAX)
                    680:          END IF
                    681: *
                    682: *     Compute componentwise relative backward error from formula
                    683: *         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
                    684: *     where abs(Z) is the componentwise absolute value of the matrix
                    685: *     or vector Z.
                    686: *
                    687: *        Compute residual RES = B_s - op(A_s) * Y,
                    688: *            op(A) = A, A**T, or A**H depending on TRANS (and type).
                    689: *
                    690:          CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
                    691:          CALL DGBMV(TRANS, N, N, KL, KU, -1.0D+0, AB, LDAB, Y(1,J),
                    692:      $        1, 1.0D+0, RES, 1 )
                    693: 
                    694:          DO I = 1, N
                    695:             AYB( I ) = ABS( B( I, J ) )
                    696:          END DO
                    697: *
                    698: *     Compute abs(op(A_s))*abs(Y) + abs(B_s).
                    699: *
                    700:         CALL DLA_GBAMV( TRANS_TYPE, N, N, KL, KU, 1.0D+0,
                    701:      $        AB, LDAB, Y(1, J), 1, 1.0D+0, AYB, 1 )
                    702: 
                    703:          CALL DLA_LIN_BERR( N, N, 1, RES, AYB, BERR_OUT( J ) )
                    704: *
                    705: *     End of loop for each RHS
                    706: *
                    707:       END DO
                    708: *
                    709:       RETURN
                    710:       END

CVSweb interface <joel.bertrand@systella.fr>