File:  [local] / rpl / lapack / lapack / dla_gbrcond.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:06 2011 UTC (12 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       DOUBLE PRECISION FUNCTION DLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB,
    2:      $                                       AFB, LDAFB, IPIV, CMODE, C,
    3:      $                                       INFO, WORK, IWORK )
    4: *
    5: *     -- LAPACK routine (version 3.2.2)                               --
    6: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    7: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    8: *     -- June 2010                                                    --
    9: *
   10: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   11: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   12: *
   13:       IMPLICIT NONE
   14: *     ..
   15: *     .. Scalar Arguments ..
   16:       CHARACTER          TRANS
   17:       INTEGER            N, LDAB, LDAFB, INFO, KL, KU, CMODE
   18: *     ..
   19: *     .. Array Arguments ..
   20:       INTEGER            IWORK( * ), IPIV( * )
   21:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
   22:      $                   C( * )
   23: *     ..
   24: *
   25: *  Purpose
   26: *  =======
   27: *
   28: *     DLA_GBRCOND Estimates the Skeel condition number of  op(A) * op2(C)
   29: *     where op2 is determined by CMODE as follows
   30: *     CMODE =  1    op2(C) = C
   31: *     CMODE =  0    op2(C) = I
   32: *     CMODE = -1    op2(C) = inv(C)
   33: *     The Skeel condition number  cond(A) = norminf( |inv(A)||A| )
   34: *     is computed by computing scaling factors R such that
   35: *     diag(R)*A*op2(C) is row equilibrated and computing the standard
   36: *     infinity-norm condition number.
   37: *
   38: *  Arguments
   39: *  =========
   40: *
   41: *     TRANS   (input) CHARACTER*1
   42: *     Specifies the form of the system of equations:
   43: *       = 'N':  A * X = B     (No transpose)
   44: *       = 'T':  A**T * X = B  (Transpose)
   45: *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   46: *
   47: *     N       (input) INTEGER
   48: *     The number of linear equations, i.e., the order of the
   49: *     matrix A.  N >= 0.
   50: *
   51: *     KL      (input) INTEGER
   52: *     The number of subdiagonals within the band of A.  KL >= 0.
   53: *
   54: *     KU      (input) INTEGER
   55: *     The number of superdiagonals within the band of A.  KU >= 0.
   56: *
   57: *     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
   58: *     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
   59: *     The j-th column of A is stored in the j-th column of the
   60: *     array AB as follows:
   61: *     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
   62: *
   63: *     LDAB    (input) INTEGER
   64: *     The leading dimension of the array AB.  LDAB >= KL+KU+1.
   65: *
   66: *     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
   67: *     Details of the LU factorization of the band matrix A, as
   68: *     computed by DGBTRF.  U is stored as an upper triangular
   69: *     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
   70: *     and the multipliers used during the factorization are stored
   71: *     in rows KL+KU+2 to 2*KL+KU+1.
   72: *
   73: *     LDAFB   (input) INTEGER
   74: *     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
   75: *
   76: *     IPIV    (input) INTEGER array, dimension (N)
   77: *     The pivot indices from the factorization A = P*L*U
   78: *     as computed by DGBTRF; row i of the matrix was interchanged
   79: *     with row IPIV(i).
   80: *
   81: *     CMODE   (input) INTEGER
   82: *     Determines op2(C) in the formula op(A) * op2(C) as follows:
   83: *     CMODE =  1    op2(C) = C
   84: *     CMODE =  0    op2(C) = I
   85: *     CMODE = -1    op2(C) = inv(C)
   86: *
   87: *     C       (input) DOUBLE PRECISION array, dimension (N)
   88: *     The vector C in the formula op(A) * op2(C).
   89: *
   90: *     INFO    (output) INTEGER
   91: *       = 0:  Successful exit.
   92: *     i > 0:  The ith argument is invalid.
   93: *
   94: *     WORK    (input) DOUBLE PRECISION array, dimension (5*N).
   95: *     Workspace.
   96: *
   97: *     IWORK   (input) INTEGER array, dimension (N).
   98: *     Workspace.
   99: *
  100: *  =====================================================================
  101: *
  102: *     .. Local Scalars ..
  103:       LOGICAL            NOTRANS
  104:       INTEGER            KASE, I, J, KD, KE
  105:       DOUBLE PRECISION   AINVNM, TMP
  106: *     ..
  107: *     .. Local Arrays ..
  108:       INTEGER            ISAVE( 3 )
  109: *     ..
  110: *     .. External Functions ..
  111:       LOGICAL            LSAME
  112:       EXTERNAL           LSAME
  113: *     ..
  114: *     .. External Subroutines ..
  115:       EXTERNAL           DLACN2, DGBTRS, XERBLA
  116: *     ..
  117: *     .. Intrinsic Functions ..
  118:       INTRINSIC          ABS, MAX
  119: *     ..
  120: *     .. Executable Statements ..
  121: *
  122:       DLA_GBRCOND = 0.0D+0
  123: *
  124:       INFO = 0
  125:       NOTRANS = LSAME( TRANS, 'N' )
  126:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
  127:      $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
  128:          INFO = -1
  129:       ELSE IF( N.LT.0 ) THEN
  130:          INFO = -2
  131:       ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
  132:          INFO = -3
  133:       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  134:          INFO = -4
  135:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  136:          INFO = -6
  137:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  138:          INFO = -8
  139:       END IF
  140:       IF( INFO.NE.0 ) THEN
  141:          CALL XERBLA( 'DLA_GBRCOND', -INFO )
  142:          RETURN
  143:       END IF
  144:       IF( N.EQ.0 ) THEN
  145:          DLA_GBRCOND = 1.0D+0
  146:          RETURN
  147:       END IF
  148: *
  149: *     Compute the equilibration matrix R such that
  150: *     inv(R)*A*C has unit 1-norm.
  151: *
  152:       KD = KU + 1
  153:       KE = KL + 1
  154:       IF ( NOTRANS ) THEN
  155:          DO I = 1, N
  156:             TMP = 0.0D+0
  157:                IF ( CMODE .EQ. 1 ) THEN
  158:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  159:                      TMP = TMP + ABS( AB( KD+I-J, J ) * C( J ) )
  160:                   END DO
  161:                ELSE IF ( CMODE .EQ. 0 ) THEN
  162:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  163:                      TMP = TMP + ABS( AB( KD+I-J, J ) )
  164:                   END DO
  165:                ELSE
  166:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  167:                      TMP = TMP + ABS( AB( KD+I-J, J ) / C( J ) )
  168:                   END DO
  169:                END IF
  170:             WORK( 2*N+I ) = TMP
  171:          END DO
  172:       ELSE
  173:          DO I = 1, N
  174:             TMP = 0.0D+0
  175:             IF ( CMODE .EQ. 1 ) THEN
  176:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  177:                   TMP = TMP + ABS( AB( KE-I+J, I ) * C( J ) )
  178:                END DO
  179:             ELSE IF ( CMODE .EQ. 0 ) THEN
  180:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  181:                   TMP = TMP + ABS( AB( KE-I+J, I ) )
  182:                END DO
  183:             ELSE
  184:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  185:                   TMP = TMP + ABS( AB( KE-I+J, I ) / C( J ) )
  186:                END DO
  187:             END IF
  188:             WORK( 2*N+I ) = TMP
  189:          END DO
  190:       END IF
  191: *
  192: *     Estimate the norm of inv(op(A)).
  193: *
  194:       AINVNM = 0.0D+0
  195: 
  196:       KASE = 0
  197:    10 CONTINUE
  198:       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  199:       IF( KASE.NE.0 ) THEN
  200:          IF( KASE.EQ.2 ) THEN
  201: *
  202: *           Multiply by R.
  203: *
  204:             DO I = 1, N
  205:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  206:             END DO
  207: 
  208:             IF ( NOTRANS ) THEN
  209:                CALL DGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  210:      $              IPIV, WORK, N, INFO )
  211:             ELSE
  212:                CALL DGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
  213:      $              WORK, N, INFO )
  214:             END IF
  215: *
  216: *           Multiply by inv(C).
  217: *
  218:             IF ( CMODE .EQ. 1 ) THEN
  219:                DO I = 1, N
  220:                   WORK( I ) = WORK( I ) / C( I )
  221:                END DO
  222:             ELSE IF ( CMODE .EQ. -1 ) THEN
  223:                DO I = 1, N
  224:                   WORK( I ) = WORK( I ) * C( I )
  225:                END DO
  226:             END IF
  227:          ELSE
  228: *
  229: *           Multiply by inv(C**T).
  230: *
  231:             IF ( CMODE .EQ. 1 ) THEN
  232:                DO I = 1, N
  233:                   WORK( I ) = WORK( I ) / C( I )
  234:                END DO
  235:             ELSE IF ( CMODE .EQ. -1 ) THEN
  236:                DO I = 1, N
  237:                   WORK( I ) = WORK( I ) * C( I )
  238:                END DO
  239:             END IF
  240: 
  241:             IF ( NOTRANS ) THEN
  242:                CALL DGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
  243:      $              WORK, N, INFO )
  244:             ELSE
  245:                CALL DGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  246:      $              IPIV, WORK, N, INFO )
  247:             END IF
  248: *
  249: *           Multiply by R.
  250: *
  251:             DO I = 1, N
  252:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  253:             END DO
  254:          END IF
  255:          GO TO 10
  256:       END IF
  257: *
  258: *     Compute the estimate of the reciprocal condition number.
  259: *
  260:       IF( AINVNM .NE. 0.0D+0 )
  261:      $   DLA_GBRCOND = ( 1.0D+0 / AINVNM )
  262: *
  263:       RETURN
  264: *
  265:       END

CVSweb interface <joel.bertrand@systella.fr>