File:  [local] / rpl / lapack / lapack / dla_gbrcond.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:18 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b DLA_GBRCOND estimates the Skeel condition number for a general banded matrix.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DLA_GBRCOND + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gbrcond.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gbrcond.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gbrcond.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       DOUBLE PRECISION FUNCTION DLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB,
   22: *                                              AFB, LDAFB, IPIV, CMODE, C,
   23: *                                              INFO, WORK, IWORK )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          TRANS
   27: *       INTEGER            N, LDAB, LDAFB, INFO, KL, KU, CMODE
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IWORK( * ), IPIV( * )
   31: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
   32: *      $                   C( * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *>    DLA_GBRCOND Estimates the Skeel condition number of  op(A) * op2(C)
   42: *>    where op2 is determined by CMODE as follows
   43: *>    CMODE =  1    op2(C) = C
   44: *>    CMODE =  0    op2(C) = I
   45: *>    CMODE = -1    op2(C) = inv(C)
   46: *>    The Skeel condition number  cond(A) = norminf( |inv(A)||A| )
   47: *>    is computed by computing scaling factors R such that
   48: *>    diag(R)*A*op2(C) is row equilibrated and computing the standard
   49: *>    infinity-norm condition number.
   50: *> \endverbatim
   51: *
   52: *  Arguments:
   53: *  ==========
   54: *
   55: *> \param[in] TRANS
   56: *> \verbatim
   57: *>          TRANS is CHARACTER*1
   58: *>     Specifies the form of the system of equations:
   59: *>       = 'N':  A * X = B     (No transpose)
   60: *>       = 'T':  A**T * X = B  (Transpose)
   61: *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
   62: *> \endverbatim
   63: *>
   64: *> \param[in] N
   65: *> \verbatim
   66: *>          N is INTEGER
   67: *>     The number of linear equations, i.e., the order of the
   68: *>     matrix A.  N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] KL
   72: *> \verbatim
   73: *>          KL is INTEGER
   74: *>     The number of subdiagonals within the band of A.  KL >= 0.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] KU
   78: *> \verbatim
   79: *>          KU is INTEGER
   80: *>     The number of superdiagonals within the band of A.  KU >= 0.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] AB
   84: *> \verbatim
   85: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
   86: *>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
   87: *>     The j-th column of A is stored in the j-th column of the
   88: *>     array AB as follows:
   89: *>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
   90: *> \endverbatim
   91: *>
   92: *> \param[in] LDAB
   93: *> \verbatim
   94: *>          LDAB is INTEGER
   95: *>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] AFB
   99: *> \verbatim
  100: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
  101: *>     Details of the LU factorization of the band matrix A, as
  102: *>     computed by DGBTRF.  U is stored as an upper triangular
  103: *>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
  104: *>     and the multipliers used during the factorization are stored
  105: *>     in rows KL+KU+2 to 2*KL+KU+1.
  106: *> \endverbatim
  107: *>
  108: *> \param[in] LDAFB
  109: *> \verbatim
  110: *>          LDAFB is INTEGER
  111: *>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] IPIV
  115: *> \verbatim
  116: *>          IPIV is INTEGER array, dimension (N)
  117: *>     The pivot indices from the factorization A = P*L*U
  118: *>     as computed by DGBTRF; row i of the matrix was interchanged
  119: *>     with row IPIV(i).
  120: *> \endverbatim
  121: *>
  122: *> \param[in] CMODE
  123: *> \verbatim
  124: *>          CMODE is INTEGER
  125: *>     Determines op2(C) in the formula op(A) * op2(C) as follows:
  126: *>     CMODE =  1    op2(C) = C
  127: *>     CMODE =  0    op2(C) = I
  128: *>     CMODE = -1    op2(C) = inv(C)
  129: *> \endverbatim
  130: *>
  131: *> \param[in] C
  132: *> \verbatim
  133: *>          C is DOUBLE PRECISION array, dimension (N)
  134: *>     The vector C in the formula op(A) * op2(C).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] INFO
  138: *> \verbatim
  139: *>          INFO is INTEGER
  140: *>       = 0:  Successful exit.
  141: *>     i > 0:  The ith argument is invalid.
  142: *> \endverbatim
  143: *>
  144: *> \param[in] WORK
  145: *> \verbatim
  146: *>          WORK is DOUBLE PRECISION array, dimension (5*N).
  147: *>     Workspace.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] IWORK
  151: *> \verbatim
  152: *>          IWORK is INTEGER array, dimension (N).
  153: *>     Workspace.
  154: *> \endverbatim
  155: *
  156: *  Authors:
  157: *  ========
  158: *
  159: *> \author Univ. of Tennessee 
  160: *> \author Univ. of California Berkeley 
  161: *> \author Univ. of Colorado Denver 
  162: *> \author NAG Ltd. 
  163: *
  164: *> \date September 2012
  165: *
  166: *> \ingroup doubleGBcomputational
  167: *
  168: *  =====================================================================
  169:       DOUBLE PRECISION FUNCTION DLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB,
  170:      $                                       AFB, LDAFB, IPIV, CMODE, C,
  171:      $                                       INFO, WORK, IWORK )
  172: *
  173: *  -- LAPACK computational routine (version 3.4.2) --
  174: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  175: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  176: *     September 2012
  177: *
  178: *     .. Scalar Arguments ..
  179:       CHARACTER          TRANS
  180:       INTEGER            N, LDAB, LDAFB, INFO, KL, KU, CMODE
  181: *     ..
  182: *     .. Array Arguments ..
  183:       INTEGER            IWORK( * ), IPIV( * )
  184:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
  185:      $                   C( * )
  186: *     ..
  187: *
  188: *  =====================================================================
  189: *
  190: *     .. Local Scalars ..
  191:       LOGICAL            NOTRANS
  192:       INTEGER            KASE, I, J, KD, KE
  193:       DOUBLE PRECISION   AINVNM, TMP
  194: *     ..
  195: *     .. Local Arrays ..
  196:       INTEGER            ISAVE( 3 )
  197: *     ..
  198: *     .. External Functions ..
  199:       LOGICAL            LSAME
  200:       EXTERNAL           LSAME
  201: *     ..
  202: *     .. External Subroutines ..
  203:       EXTERNAL           DLACN2, DGBTRS, XERBLA
  204: *     ..
  205: *     .. Intrinsic Functions ..
  206:       INTRINSIC          ABS, MAX
  207: *     ..
  208: *     .. Executable Statements ..
  209: *
  210:       DLA_GBRCOND = 0.0D+0
  211: *
  212:       INFO = 0
  213:       NOTRANS = LSAME( TRANS, 'N' )
  214:       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
  215:      $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
  216:          INFO = -1
  217:       ELSE IF( N.LT.0 ) THEN
  218:          INFO = -2
  219:       ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
  220:          INFO = -3
  221:       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  222:          INFO = -4
  223:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  224:          INFO = -6
  225:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  226:          INFO = -8
  227:       END IF
  228:       IF( INFO.NE.0 ) THEN
  229:          CALL XERBLA( 'DLA_GBRCOND', -INFO )
  230:          RETURN
  231:       END IF
  232:       IF( N.EQ.0 ) THEN
  233:          DLA_GBRCOND = 1.0D+0
  234:          RETURN
  235:       END IF
  236: *
  237: *     Compute the equilibration matrix R such that
  238: *     inv(R)*A*C has unit 1-norm.
  239: *
  240:       KD = KU + 1
  241:       KE = KL + 1
  242:       IF ( NOTRANS ) THEN
  243:          DO I = 1, N
  244:             TMP = 0.0D+0
  245:                IF ( CMODE .EQ. 1 ) THEN
  246:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  247:                      TMP = TMP + ABS( AB( KD+I-J, J ) * C( J ) )
  248:                   END DO
  249:                ELSE IF ( CMODE .EQ. 0 ) THEN
  250:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  251:                      TMP = TMP + ABS( AB( KD+I-J, J ) )
  252:                   END DO
  253:                ELSE
  254:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  255:                      TMP = TMP + ABS( AB( KD+I-J, J ) / C( J ) )
  256:                   END DO
  257:                END IF
  258:             WORK( 2*N+I ) = TMP
  259:          END DO
  260:       ELSE
  261:          DO I = 1, N
  262:             TMP = 0.0D+0
  263:             IF ( CMODE .EQ. 1 ) THEN
  264:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  265:                   TMP = TMP + ABS( AB( KE-I+J, I ) * C( J ) )
  266:                END DO
  267:             ELSE IF ( CMODE .EQ. 0 ) THEN
  268:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  269:                   TMP = TMP + ABS( AB( KE-I+J, I ) )
  270:                END DO
  271:             ELSE
  272:                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
  273:                   TMP = TMP + ABS( AB( KE-I+J, I ) / C( J ) )
  274:                END DO
  275:             END IF
  276:             WORK( 2*N+I ) = TMP
  277:          END DO
  278:       END IF
  279: *
  280: *     Estimate the norm of inv(op(A)).
  281: *
  282:       AINVNM = 0.0D+0
  283: 
  284:       KASE = 0
  285:    10 CONTINUE
  286:       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  287:       IF( KASE.NE.0 ) THEN
  288:          IF( KASE.EQ.2 ) THEN
  289: *
  290: *           Multiply by R.
  291: *
  292:             DO I = 1, N
  293:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  294:             END DO
  295: 
  296:             IF ( NOTRANS ) THEN
  297:                CALL DGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  298:      $              IPIV, WORK, N, INFO )
  299:             ELSE
  300:                CALL DGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
  301:      $              WORK, N, INFO )
  302:             END IF
  303: *
  304: *           Multiply by inv(C).
  305: *
  306:             IF ( CMODE .EQ. 1 ) THEN
  307:                DO I = 1, N
  308:                   WORK( I ) = WORK( I ) / C( I )
  309:                END DO
  310:             ELSE IF ( CMODE .EQ. -1 ) THEN
  311:                DO I = 1, N
  312:                   WORK( I ) = WORK( I ) * C( I )
  313:                END DO
  314:             END IF
  315:          ELSE
  316: *
  317: *           Multiply by inv(C**T).
  318: *
  319:             IF ( CMODE .EQ. 1 ) THEN
  320:                DO I = 1, N
  321:                   WORK( I ) = WORK( I ) / C( I )
  322:                END DO
  323:             ELSE IF ( CMODE .EQ. -1 ) THEN
  324:                DO I = 1, N
  325:                   WORK( I ) = WORK( I ) * C( I )
  326:                END DO
  327:             END IF
  328: 
  329:             IF ( NOTRANS ) THEN
  330:                CALL DGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
  331:      $              WORK, N, INFO )
  332:             ELSE
  333:                CALL DGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
  334:      $              IPIV, WORK, N, INFO )
  335:             END IF
  336: *
  337: *           Multiply by R.
  338: *
  339:             DO I = 1, N
  340:                WORK( I ) = WORK( I ) * WORK( 2*N+I )
  341:             END DO
  342:          END IF
  343:          GO TO 10
  344:       END IF
  345: *
  346: *     Compute the estimate of the reciprocal condition number.
  347: *
  348:       IF( AINVNM .NE. 0.0D+0 )
  349:      $   DLA_GBRCOND = ( 1.0D+0 / AINVNM )
  350: *
  351:       RETURN
  352: *
  353:       END

CVSweb interface <joel.bertrand@systella.fr>