--- rpl/lapack/lapack/dla_gbrcond.f 2011/07/22 07:38:06 1.5 +++ rpl/lapack/lapack/dla_gbrcond.f 2011/11/21 20:42:53 1.6 @@ -1,17 +1,180 @@ +*> \brief \b DLA_GBRCOND +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DLA_GBRCOND + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* DOUBLE PRECISION FUNCTION DLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB, +* AFB, LDAFB, IPIV, CMODE, C, +* INFO, WORK, IWORK ) +* +* .. Scalar Arguments .. +* CHARACTER TRANS +* INTEGER N, LDAB, LDAFB, INFO, KL, KU, CMODE +* .. +* .. Array Arguments .. +* INTEGER IWORK( * ), IPIV( * ) +* DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ), +* $ C( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> DLA_GBRCOND Estimates the Skeel condition number of op(A) * op2(C) +*> where op2 is determined by CMODE as follows +*> CMODE = 1 op2(C) = C +*> CMODE = 0 op2(C) = I +*> CMODE = -1 op2(C) = inv(C) +*> The Skeel condition number cond(A) = norminf( |inv(A)||A| ) +*> is computed by computing scaling factors R such that +*> diag(R)*A*op2(C) is row equilibrated and computing the standard +*> infinity-norm condition number. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> Specifies the form of the system of equations: +*> = 'N': A * X = B (No transpose) +*> = 'T': A**T * X = B (Transpose) +*> = 'C': A**H * X = B (Conjugate Transpose = Transpose) +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The number of linear equations, i.e., the order of the +*> matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] KL +*> \verbatim +*> KL is INTEGER +*> The number of subdiagonals within the band of A. KL >= 0. +*> \endverbatim +*> +*> \param[in] KU +*> \verbatim +*> KU is INTEGER +*> The number of superdiagonals within the band of A. KU >= 0. +*> \endverbatim +*> +*> \param[in] AB +*> \verbatim +*> AB is DOUBLE PRECISION array, dimension (LDAB,N) +*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1. +*> The j-th column of A is stored in the j-th column of the +*> array AB as follows: +*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) +*> \endverbatim +*> +*> \param[in] LDAB +*> \verbatim +*> LDAB is INTEGER +*> The leading dimension of the array AB. LDAB >= KL+KU+1. +*> \endverbatim +*> +*> \param[in] AFB +*> \verbatim +*> AFB is DOUBLE PRECISION array, dimension (LDAFB,N) +*> Details of the LU factorization of the band matrix A, as +*> computed by DGBTRF. U is stored as an upper triangular +*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, +*> and the multipliers used during the factorization are stored +*> in rows KL+KU+2 to 2*KL+KU+1. +*> \endverbatim +*> +*> \param[in] LDAFB +*> \verbatim +*> LDAFB is INTEGER +*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. +*> \endverbatim +*> +*> \param[in] IPIV +*> \verbatim +*> IPIV is INTEGER array, dimension (N) +*> The pivot indices from the factorization A = P*L*U +*> as computed by DGBTRF; row i of the matrix was interchanged +*> with row IPIV(i). +*> \endverbatim +*> +*> \param[in] CMODE +*> \verbatim +*> CMODE is INTEGER +*> Determines op2(C) in the formula op(A) * op2(C) as follows: +*> CMODE = 1 op2(C) = C +*> CMODE = 0 op2(C) = I +*> CMODE = -1 op2(C) = inv(C) +*> \endverbatim +*> +*> \param[in] C +*> \verbatim +*> C is DOUBLE PRECISION array, dimension (N) +*> The vector C in the formula op(A) * op2(C). +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: Successful exit. +*> i > 0: The ith argument is invalid. +*> \endverbatim +*> +*> \param[in] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (5*N). +*> Workspace. +*> \endverbatim +*> +*> \param[in] IWORK +*> \verbatim +*> IWORK is INTEGER array, dimension (N). +*> Workspace. +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup doubleGBcomputational +* +* ===================================================================== DOUBLE PRECISION FUNCTION DLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB, $ AFB, LDAFB, IPIV, CMODE, C, $ INFO, WORK, IWORK ) * -* -- LAPACK routine (version 3.2.2) -- -* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- -* -- Jason Riedy of Univ. of California Berkeley. -- -* -- June 2010 -- +* -- LAPACK computational routine (version 3.4.0) -- +* -- LAPACK is a software package provided by Univ. of Tennessee, -- +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- +* November 2011 * -* -- LAPACK is a software package provided by Univ. of Tennessee, -- -* -- Univ. of California Berkeley and NAG Ltd. -- -* - IMPLICIT NONE -* .. * .. Scalar Arguments .. CHARACTER TRANS INTEGER N, LDAB, LDAFB, INFO, KL, KU, CMODE @@ -22,81 +185,6 @@ $ C( * ) * .. * -* Purpose -* ======= -* -* DLA_GBRCOND Estimates the Skeel condition number of op(A) * op2(C) -* where op2 is determined by CMODE as follows -* CMODE = 1 op2(C) = C -* CMODE = 0 op2(C) = I -* CMODE = -1 op2(C) = inv(C) -* The Skeel condition number cond(A) = norminf( |inv(A)||A| ) -* is computed by computing scaling factors R such that -* diag(R)*A*op2(C) is row equilibrated and computing the standard -* infinity-norm condition number. -* -* Arguments -* ========= -* -* TRANS (input) CHARACTER*1 -* Specifies the form of the system of equations: -* = 'N': A * X = B (No transpose) -* = 'T': A**T * X = B (Transpose) -* = 'C': A**H * X = B (Conjugate Transpose = Transpose) -* -* N (input) INTEGER -* The number of linear equations, i.e., the order of the -* matrix A. N >= 0. -* -* KL (input) INTEGER -* The number of subdiagonals within the band of A. KL >= 0. -* -* KU (input) INTEGER -* The number of superdiagonals within the band of A. KU >= 0. -* -* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) -* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. -* The j-th column of A is stored in the j-th column of the -* array AB as follows: -* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) -* -* LDAB (input) INTEGER -* The leading dimension of the array AB. LDAB >= KL+KU+1. -* -* AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N) -* Details of the LU factorization of the band matrix A, as -* computed by DGBTRF. U is stored as an upper triangular -* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, -* and the multipliers used during the factorization are stored -* in rows KL+KU+2 to 2*KL+KU+1. -* -* LDAFB (input) INTEGER -* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. -* -* IPIV (input) INTEGER array, dimension (N) -* The pivot indices from the factorization A = P*L*U -* as computed by DGBTRF; row i of the matrix was interchanged -* with row IPIV(i). -* -* CMODE (input) INTEGER -* Determines op2(C) in the formula op(A) * op2(C) as follows: -* CMODE = 1 op2(C) = C -* CMODE = 0 op2(C) = I -* CMODE = -1 op2(C) = inv(C) -* -* C (input) DOUBLE PRECISION array, dimension (N) -* The vector C in the formula op(A) * op2(C). -* -* INFO (output) INTEGER -* = 0: Successful exit. -* i > 0: The ith argument is invalid. -* -* WORK (input) DOUBLE PRECISION array, dimension (5*N). -* Workspace. -* -* IWORK (input) INTEGER array, dimension (N). -* Workspace. -* * ===================================================================== * * .. Local Scalars ..