File:  [local] / rpl / lapack / lapack / dla_gbamv.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:27 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DLA_GBAMV( TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X,
    2:      $                      INCX, BETA, Y, INCY )
    3: *
    4: *     -- LAPACK routine (version 3.2.2)                                 --
    5: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
    6: *     -- Jason Riedy of Univ. of California Berkeley.                 --
    7: *     -- June 2010                                                    --
    8: *
    9: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
   10: *     -- Univ. of California Berkeley and NAG Ltd.                    --
   11: *
   12:       IMPLICIT NONE
   13: *     ..
   14: *     .. Scalar Arguments ..
   15:       DOUBLE PRECISION   ALPHA, BETA
   16:       INTEGER            INCX, INCY, LDAB, M, N, KL, KU, TRANS
   17: *     ..
   18: *     .. Array Arguments ..
   19:       DOUBLE PRECISION   AB( LDAB, * ), X( * ), Y( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DLA_GBAMV  performs one of the matrix-vector operations
   26: *
   27: *          y := alpha*abs(A)*abs(x) + beta*abs(y),
   28: *     or   y := alpha*abs(A)'*abs(x) + beta*abs(y),
   29: *
   30: *  where alpha and beta are scalars, x and y are vectors and A is an
   31: *  m by n matrix.
   32: *
   33: *  This function is primarily used in calculating error bounds.
   34: *  To protect against underflow during evaluation, components in
   35: *  the resulting vector are perturbed away from zero by (N+1)
   36: *  times the underflow threshold.  To prevent unnecessarily large
   37: *  errors for block-structure embedded in general matrices,
   38: *  "symbolically" zero components are not perturbed.  A zero
   39: *  entry is considered "symbolic" if all multiplications involved
   40: *  in computing that entry have at least one zero multiplicand.
   41: *
   42: *  Arguments
   43: *  ==========
   44: *
   45: *  TRANS   (input) INTEGER
   46: *           On entry, TRANS specifies the operation to be performed as
   47: *           follows:
   48: *
   49: *             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
   50: *             BLAS_TRANS         y := alpha*abs(A')*abs(x) + beta*abs(y)
   51: *             BLAS_CONJ_TRANS    y := alpha*abs(A')*abs(x) + beta*abs(y)
   52: *
   53: *           Unchanged on exit.
   54: *
   55: *  M       (input) INTEGER
   56: *           On entry, M specifies the number of rows of the matrix A.
   57: *           M must be at least zero.
   58: *           Unchanged on exit.
   59: *
   60: *  N       (input) INTEGER
   61: *           On entry, N specifies the number of columns of the matrix A.
   62: *           N must be at least zero.
   63: *           Unchanged on exit.
   64: *
   65: *  KL      (input) INTEGER
   66: *           The number of subdiagonals within the band of A.  KL >= 0.
   67: *
   68: *  KU      (input) INTEGER
   69: *           The number of superdiagonals within the band of A.  KU >= 0.
   70: *
   71: *  ALPHA  - DOUBLE PRECISION
   72: *           On entry, ALPHA specifies the scalar alpha.
   73: *           Unchanged on exit.
   74: *
   75: *  A      - DOUBLE PRECISION   array of DIMENSION ( LDA, n )
   76: *           Before entry, the leading m by n part of the array A must
   77: *           contain the matrix of coefficients.
   78: *           Unchanged on exit.
   79: *
   80: *  LDA     (input) INTEGER
   81: *           On entry, LDA specifies the first dimension of A as declared
   82: *           in the calling (sub) program. LDA must be at least
   83: *           max( 1, m ).
   84: *           Unchanged on exit.
   85: *
   86: *  X       (input) DOUBLE PRECISION array, dimension
   87: *           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
   88: *           and at least
   89: *           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
   90: *           Before entry, the incremented array X must contain the
   91: *           vector x.
   92: *           Unchanged on exit.
   93: *
   94: *  INCX    (input) INTEGER
   95: *           On entry, INCX specifies the increment for the elements of
   96: *           X. INCX must not be zero.
   97: *           Unchanged on exit.
   98: *
   99: *  BETA   - DOUBLE PRECISION
  100: *           On entry, BETA specifies the scalar beta. When BETA is
  101: *           supplied as zero then Y need not be set on input.
  102: *           Unchanged on exit.
  103: *
  104: *  Y       (input/output) DOUBLE PRECISION  array, dimension
  105: *           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  106: *           and at least
  107: *           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  108: *           Before entry with BETA non-zero, the incremented array Y
  109: *           must contain the vector y. On exit, Y is overwritten by the
  110: *           updated vector y.
  111: *
  112: *  INCY    (input) INTEGER
  113: *           On entry, INCY specifies the increment for the elements of
  114: *           Y. INCY must not be zero.
  115: *           Unchanged on exit.
  116: *
  117: *
  118: *  Level 2 Blas routine.
  119: *
  120: *  =====================================================================
  121: 
  122: *     .. Parameters ..
  123:       DOUBLE PRECISION   ONE, ZERO
  124:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  125: *     ..
  126: *     .. Local Scalars ..
  127:       LOGICAL            SYMB_ZERO
  128:       DOUBLE PRECISION   TEMP, SAFE1
  129:       INTEGER            I, INFO, IY, J, JX, KX, KY, LENX, LENY, KD, KE
  130: *     ..
  131: *     .. External Subroutines ..
  132:       EXTERNAL           XERBLA, DLAMCH
  133:       DOUBLE PRECISION   DLAMCH
  134: *     ..
  135: *     .. External Functions ..
  136:       EXTERNAL           ILATRANS
  137:       INTEGER            ILATRANS
  138: *     ..
  139: *     .. Intrinsic Functions ..
  140:       INTRINSIC          MAX, ABS, SIGN
  141: *     ..
  142: *     .. Executable Statements ..
  143: *
  144: *     Test the input parameters.
  145: *
  146:       INFO = 0
  147:       IF     ( .NOT.( ( TRANS.EQ.ILATRANS( 'N' ) )
  148:      $           .OR. ( TRANS.EQ.ILATRANS( 'T' ) )
  149:      $           .OR. ( TRANS.EQ.ILATRANS( 'C' ) ) ) ) THEN
  150:          INFO = 1
  151:       ELSE IF( M.LT.0 )THEN
  152:          INFO = 2
  153:       ELSE IF( N.LT.0 )THEN
  154:          INFO = 3
  155:       ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN
  156:          INFO = 4
  157:       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
  158:          INFO = 5
  159:       ELSE IF( LDAB.LT.KL+KU+1 )THEN
  160:          INFO = 6
  161:       ELSE IF( INCX.EQ.0 )THEN
  162:          INFO = 8
  163:       ELSE IF( INCY.EQ.0 )THEN
  164:          INFO = 11
  165:       END IF
  166:       IF( INFO.NE.0 )THEN
  167:          CALL XERBLA( 'DLA_GBAMV ', INFO )
  168:          RETURN
  169:       END IF
  170: *
  171: *     Quick return if possible.
  172: *
  173:       IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  174:      $    ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  175:      $   RETURN
  176: *
  177: *     Set  LENX  and  LENY, the lengths of the vectors x and y, and set
  178: *     up the start points in  X  and  Y.
  179: *
  180:       IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  181:          LENX = N
  182:          LENY = M
  183:       ELSE
  184:          LENX = M
  185:          LENY = N
  186:       END IF
  187:       IF( INCX.GT.0 )THEN
  188:          KX = 1
  189:       ELSE
  190:          KX = 1 - ( LENX - 1 )*INCX
  191:       END IF
  192:       IF( INCY.GT.0 )THEN
  193:          KY = 1
  194:       ELSE
  195:          KY = 1 - ( LENY - 1 )*INCY
  196:       END IF
  197: *
  198: *     Set SAFE1 essentially to be the underflow threshold times the
  199: *     number of additions in each row.
  200: *
  201:       SAFE1 = DLAMCH( 'Safe minimum' )
  202:       SAFE1 = (N+1)*SAFE1
  203: *
  204: *     Form  y := alpha*abs(A)*abs(x) + beta*abs(y).
  205: *
  206: *     The O(M*N) SYMB_ZERO tests could be replaced by O(N) queries to
  207: *     the inexact flag.  Still doesn't help change the iteration order
  208: *     to per-column.
  209: *
  210:       KD = KU + 1
  211:       KE = KL + 1
  212:       IY = KY
  213:       IF ( INCX.EQ.1 ) THEN
  214:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  215:             DO I = 1, LENY
  216:                IF ( BETA .EQ. ZERO ) THEN
  217:                   SYMB_ZERO = .TRUE.
  218:                   Y( IY ) = 0.0D+0
  219:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  220:                   SYMB_ZERO = .TRUE.
  221:                ELSE
  222:                   SYMB_ZERO = .FALSE.
  223:                   Y( IY ) = BETA * ABS( Y( IY ) )
  224:                END IF
  225:                IF ( ALPHA .NE. ZERO ) THEN
  226:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  227:                      TEMP = ABS( AB( KD+I-J, J ) )
  228:                      SYMB_ZERO = SYMB_ZERO .AND.
  229:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  230: 
  231:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  232:                   END DO
  233:                END IF
  234: 
  235:                IF ( .NOT.SYMB_ZERO )
  236:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  237:                IY = IY + INCY
  238:             END DO
  239:          ELSE
  240:             DO I = 1, LENY
  241:                IF ( BETA .EQ. ZERO ) THEN
  242:                   SYMB_ZERO = .TRUE.
  243:                   Y( IY ) = 0.0D+0
  244:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  245:                   SYMB_ZERO = .TRUE.
  246:                ELSE
  247:                   SYMB_ZERO = .FALSE.
  248:                   Y( IY ) = BETA * ABS( Y( IY ) )
  249:                END IF
  250:                IF ( ALPHA .NE. ZERO ) THEN
  251:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  252:                      TEMP = ABS( AB( KE-I+J, I ) )
  253:                      SYMB_ZERO = SYMB_ZERO .AND.
  254:      $                    ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  255: 
  256:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( J ) )*TEMP
  257:                   END DO
  258:                END IF
  259: 
  260:                IF ( .NOT.SYMB_ZERO )
  261:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  262:                IY = IY + INCY
  263:             END DO
  264:          END IF
  265:       ELSE
  266:          IF( TRANS.EQ.ILATRANS( 'N' ) )THEN
  267:             DO I = 1, LENY
  268:                IF ( BETA .EQ. ZERO ) THEN
  269:                   SYMB_ZERO = .TRUE.
  270:                   Y( IY ) = 0.0D+0
  271:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  272:                   SYMB_ZERO = .TRUE.
  273:                ELSE
  274:                   SYMB_ZERO = .FALSE.
  275:                   Y( IY ) = BETA * ABS( Y( IY ) )
  276:                END IF
  277:                IF ( ALPHA .NE. ZERO ) THEN
  278:                   JX = KX
  279:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  280:                      TEMP = ABS( AB( KD+I-J, J ) )
  281:                      SYMB_ZERO = SYMB_ZERO .AND.
  282:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  283: 
  284:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  285:                      JX = JX + INCX
  286:                   END DO
  287:                END IF
  288: 
  289:                IF ( .NOT.SYMB_ZERO )
  290:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  291: 
  292:                IY = IY + INCY
  293:             END DO
  294:          ELSE
  295:             DO I = 1, LENY
  296:                IF ( BETA .EQ. ZERO ) THEN
  297:                   SYMB_ZERO = .TRUE.
  298:                   Y( IY ) = 0.0D+0
  299:                ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  300:                   SYMB_ZERO = .TRUE.
  301:                ELSE
  302:                   SYMB_ZERO = .FALSE.
  303:                   Y( IY ) = BETA * ABS( Y( IY ) )
  304:                END IF
  305:                IF ( ALPHA .NE. ZERO ) THEN
  306:                   JX = KX
  307:                   DO J = MAX( I-KL, 1 ), MIN( I+KU, LENX )
  308:                      TEMP = ABS( AB( KE-I+J, I ) )
  309:                      SYMB_ZERO = SYMB_ZERO .AND.
  310:      $                    ( X( JX ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  311: 
  312:                      Y( IY ) = Y( IY ) + ALPHA*ABS( X( JX ) )*TEMP
  313:                      JX = JX + INCX
  314:                   END DO
  315:                END IF
  316: 
  317:                IF ( .NOT.SYMB_ZERO )
  318:      $              Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  319: 
  320:                IY = IY + INCY
  321:             END DO
  322:          END IF
  323: 
  324:       END IF
  325: *
  326:       RETURN
  327: *
  328: *     End of DLA_GBAMV
  329: *
  330:       END

CVSweb interface <joel.bertrand@systella.fr>