File:  [local] / rpl / lapack / lapack / dhseqr.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:38 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
    2:      $                   LDZ, WORK, LWORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
    6: *     November 2006
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
   10:       CHARACTER          COMPZ, JOB
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
   14:      $                   Z( LDZ, * )
   15: *     ..
   16: *     Purpose
   17: *     =======
   18: *
   19: *     DHSEQR computes the eigenvalues of a Hessenberg matrix H
   20: *     and, optionally, the matrices T and Z from the Schur decomposition
   21: *     H = Z T Z**T, where T is an upper quasi-triangular matrix (the
   22: *     Schur form), and Z is the orthogonal matrix of Schur vectors.
   23: *
   24: *     Optionally Z may be postmultiplied into an input orthogonal
   25: *     matrix Q so that this routine can give the Schur factorization
   26: *     of a matrix A which has been reduced to the Hessenberg form H
   27: *     by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
   28: *
   29: *     Arguments
   30: *     =========
   31: *
   32: *     JOB   (input) CHARACTER*1
   33: *           = 'E':  compute eigenvalues only;
   34: *           = 'S':  compute eigenvalues and the Schur form T.
   35: *
   36: *     COMPZ (input) CHARACTER*1
   37: *           = 'N':  no Schur vectors are computed;
   38: *           = 'I':  Z is initialized to the unit matrix and the matrix Z
   39: *                   of Schur vectors of H is returned;
   40: *           = 'V':  Z must contain an orthogonal matrix Q on entry, and
   41: *                   the product Q*Z is returned.
   42: *
   43: *     N     (input) INTEGER
   44: *           The order of the matrix H.  N .GE. 0.
   45: *
   46: *     ILO   (input) INTEGER
   47: *     IHI   (input) INTEGER
   48: *           It is assumed that H is already upper triangular in rows
   49: *           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
   50: *           set by a previous call to DGEBAL, and then passed to DGEHRD
   51: *           when the matrix output by DGEBAL is reduced to Hessenberg
   52: *           form. Otherwise ILO and IHI should be set to 1 and N
   53: *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
   54: *           If N = 0, then ILO = 1 and IHI = 0.
   55: *
   56: *     H     (input/output) DOUBLE PRECISION array, dimension (LDH,N)
   57: *           On entry, the upper Hessenberg matrix H.
   58: *           On exit, if INFO = 0 and JOB = 'S', then H contains the
   59: *           upper quasi-triangular matrix T from the Schur decomposition
   60: *           (the Schur form); 2-by-2 diagonal blocks (corresponding to
   61: *           complex conjugate pairs of eigenvalues) are returned in
   62: *           standard form, with H(i,i) = H(i+1,i+1) and
   63: *           H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
   64: *           contents of H are unspecified on exit.  (The output value of
   65: *           H when INFO.GT.0 is given under the description of INFO
   66: *           below.)
   67: *
   68: *           Unlike earlier versions of DHSEQR, this subroutine may
   69: *           explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
   70: *           or j = IHI+1, IHI+2, ... N.
   71: *
   72: *     LDH   (input) INTEGER
   73: *           The leading dimension of the array H. LDH .GE. max(1,N).
   74: *
   75: *     WR    (output) DOUBLE PRECISION array, dimension (N)
   76: *     WI    (output) DOUBLE PRECISION array, dimension (N)
   77: *           The real and imaginary parts, respectively, of the computed
   78: *           eigenvalues. If two eigenvalues are computed as a complex
   79: *           conjugate pair, they are stored in consecutive elements of
   80: *           WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
   81: *           WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
   82: *           the same order as on the diagonal of the Schur form returned
   83: *           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
   84: *           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
   85: *           WI(i+1) = -WI(i).
   86: *
   87: *     Z     (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
   88: *           If COMPZ = 'N', Z is not referenced.
   89: *           If COMPZ = 'I', on entry Z need not be set and on exit,
   90: *           if INFO = 0, Z contains the orthogonal matrix Z of the Schur
   91: *           vectors of H.  If COMPZ = 'V', on entry Z must contain an
   92: *           N-by-N matrix Q, which is assumed to be equal to the unit
   93: *           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
   94: *           if INFO = 0, Z contains Q*Z.
   95: *           Normally Q is the orthogonal matrix generated by DORGHR
   96: *           after the call to DGEHRD which formed the Hessenberg matrix
   97: *           H. (The output value of Z when INFO.GT.0 is given under
   98: *           the description of INFO below.)
   99: *
  100: *     LDZ   (input) INTEGER
  101: *           The leading dimension of the array Z.  if COMPZ = 'I' or
  102: *           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.
  103: *
  104: *     WORK  (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
  105: *           On exit, if INFO = 0, WORK(1) returns an estimate of
  106: *           the optimal value for LWORK.
  107: *
  108: *     LWORK (input) INTEGER
  109: *           The dimension of the array WORK.  LWORK .GE. max(1,N)
  110: *           is sufficient and delivers very good and sometimes
  111: *           optimal performance.  However, LWORK as large as 11*N
  112: *           may be required for optimal performance.  A workspace
  113: *           query is recommended to determine the optimal workspace
  114: *           size.
  115: *
  116: *           If LWORK = -1, then DHSEQR does a workspace query.
  117: *           In this case, DHSEQR checks the input parameters and
  118: *           estimates the optimal workspace size for the given
  119: *           values of N, ILO and IHI.  The estimate is returned
  120: *           in WORK(1).  No error message related to LWORK is
  121: *           issued by XERBLA.  Neither H nor Z are accessed.
  122: *
  123: *
  124: *     INFO  (output) INTEGER
  125: *             =  0:  successful exit
  126: *           .LT. 0:  if INFO = -i, the i-th argument had an illegal
  127: *                    value
  128: *           .GT. 0:  if INFO = i, DHSEQR failed to compute all of
  129: *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
  130: *                and WI contain those eigenvalues which have been
  131: *                successfully computed.  (Failures are rare.)
  132: *
  133: *                If INFO .GT. 0 and JOB = 'E', then on exit, the
  134: *                remaining unconverged eigenvalues are the eigen-
  135: *                values of the upper Hessenberg matrix rows and
  136: *                columns ILO through INFO of the final, output
  137: *                value of H.
  138: *
  139: *                If INFO .GT. 0 and JOB   = 'S', then on exit
  140: *
  141: *           (*)  (initial value of H)*U  = U*(final value of H)
  142: *
  143: *                where U is an orthogonal matrix.  The final
  144: *                value of H is upper Hessenberg and quasi-triangular
  145: *                in rows and columns INFO+1 through IHI.
  146: *
  147: *                If INFO .GT. 0 and COMPZ = 'V', then on exit
  148: *
  149: *                  (final value of Z)  =  (initial value of Z)*U
  150: *
  151: *                where U is the orthogonal matrix in (*) (regard-
  152: *                less of the value of JOB.)
  153: *
  154: *                If INFO .GT. 0 and COMPZ = 'I', then on exit
  155: *                      (final value of Z)  = U
  156: *                where U is the orthogonal matrix in (*) (regard-
  157: *                less of the value of JOB.)
  158: *
  159: *                If INFO .GT. 0 and COMPZ = 'N', then Z is not
  160: *                accessed.
  161: *
  162: *     ================================================================
  163: *             Default values supplied by
  164: *             ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
  165: *             It is suggested that these defaults be adjusted in order
  166: *             to attain best performance in each particular
  167: *             computational environment.
  168: *
  169: *            ISPEC=12: The DLAHQR vs DLAQR0 crossover point.
  170: *                      Default: 75. (Must be at least 11.)
  171: *
  172: *            ISPEC=13: Recommended deflation window size.
  173: *                      This depends on ILO, IHI and NS.  NS is the
  174: *                      number of simultaneous shifts returned
  175: *                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
  176: *                      The default for (IHI-ILO+1).LE.500 is NS.
  177: *                      The default for (IHI-ILO+1).GT.500 is 3*NS/2.
  178: *
  179: *            ISPEC=14: Nibble crossover point. (See IPARMQ for
  180: *                      details.)  Default: 14% of deflation window
  181: *                      size.
  182: *
  183: *            ISPEC=15: Number of simultaneous shifts in a multishift
  184: *                      QR iteration.
  185: *
  186: *                      If IHI-ILO+1 is ...
  187: *
  188: *                      greater than      ...but less    ... the
  189: *                      or equal to ...      than        default is
  190: *
  191: *                           1               30          NS =   2(+)
  192: *                          30               60          NS =   4(+)
  193: *                          60              150          NS =  10(+)
  194: *                         150              590          NS =  **
  195: *                         590             3000          NS =  64
  196: *                        3000             6000          NS = 128
  197: *                        6000             infinity      NS = 256
  198: *
  199: *                  (+)  By default some or all matrices of this order
  200: *                       are passed to the implicit double shift routine
  201: *                       DLAHQR and this parameter is ignored.  See
  202: *                       ISPEC=12 above and comments in IPARMQ for
  203: *                       details.
  204: *
  205: *                 (**)  The asterisks (**) indicate an ad-hoc
  206: *                       function of N increasing from 10 to 64.
  207: *
  208: *            ISPEC=16: Select structured matrix multiply.
  209: *                      If the number of simultaneous shifts (specified
  210: *                      by ISPEC=15) is less than 14, then the default
  211: *                      for ISPEC=16 is 0.  Otherwise the default for
  212: *                      ISPEC=16 is 2.
  213: *
  214: *     ================================================================
  215: *     Based on contributions by
  216: *        Karen Braman and Ralph Byers, Department of Mathematics,
  217: *        University of Kansas, USA
  218: *
  219: *     ================================================================
  220: *     References:
  221: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  222: *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  223: *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  224: *       929--947, 2002.
  225: *
  226: *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  227: *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  228: *       of Matrix Analysis, volume 23, pages 948--973, 2002.
  229: *
  230: *     ================================================================
  231: *     .. Parameters ..
  232: *
  233: *     ==== Matrices of order NTINY or smaller must be processed by
  234: *     .    DLAHQR because of insufficient subdiagonal scratch space.
  235: *     .    (This is a hard limit.) ====
  236:       INTEGER            NTINY
  237:       PARAMETER          ( NTINY = 11 )
  238: *
  239: *     ==== NL allocates some local workspace to help small matrices
  240: *     .    through a rare DLAHQR failure.  NL .GT. NTINY = 11 is
  241: *     .    required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
  242: *     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
  243: *     .    allows up to six simultaneous shifts and a 16-by-16
  244: *     .    deflation window.  ====
  245:       INTEGER            NL
  246:       PARAMETER          ( NL = 49 )
  247:       DOUBLE PRECISION   ZERO, ONE
  248:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  249: *     ..
  250: *     .. Local Arrays ..
  251:       DOUBLE PRECISION   HL( NL, NL ), WORKL( NL )
  252: *     ..
  253: *     .. Local Scalars ..
  254:       INTEGER            I, KBOT, NMIN
  255:       LOGICAL            INITZ, LQUERY, WANTT, WANTZ
  256: *     ..
  257: *     .. External Functions ..
  258:       INTEGER            ILAENV
  259:       LOGICAL            LSAME
  260:       EXTERNAL           ILAENV, LSAME
  261: *     ..
  262: *     .. External Subroutines ..
  263:       EXTERNAL           DLACPY, DLAHQR, DLAQR0, DLASET, XERBLA
  264: *     ..
  265: *     .. Intrinsic Functions ..
  266:       INTRINSIC          DBLE, MAX, MIN
  267: *     ..
  268: *     .. Executable Statements ..
  269: *
  270: *     ==== Decode and check the input parameters. ====
  271: *
  272:       WANTT = LSAME( JOB, 'S' )
  273:       INITZ = LSAME( COMPZ, 'I' )
  274:       WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
  275:       WORK( 1 ) = DBLE( MAX( 1, N ) )
  276:       LQUERY = LWORK.EQ.-1
  277: *
  278:       INFO = 0
  279:       IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
  280:          INFO = -1
  281:       ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
  282:          INFO = -2
  283:       ELSE IF( N.LT.0 ) THEN
  284:          INFO = -3
  285:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
  286:          INFO = -4
  287:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
  288:          INFO = -5
  289:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
  290:          INFO = -7
  291:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
  292:          INFO = -11
  293:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  294:          INFO = -13
  295:       END IF
  296: *
  297:       IF( INFO.NE.0 ) THEN
  298: *
  299: *        ==== Quick return in case of invalid argument. ====
  300: *
  301:          CALL XERBLA( 'DHSEQR', -INFO )
  302:          RETURN
  303: *
  304:       ELSE IF( N.EQ.0 ) THEN
  305: *
  306: *        ==== Quick return in case N = 0; nothing to do. ====
  307: *
  308:          RETURN
  309: *
  310:       ELSE IF( LQUERY ) THEN
  311: *
  312: *        ==== Quick return in case of a workspace query ====
  313: *
  314:          CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
  315:      $                IHI, Z, LDZ, WORK, LWORK, INFO )
  316: *        ==== Ensure reported workspace size is backward-compatible with
  317: *        .    previous LAPACK versions. ====
  318:          WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
  319:          RETURN
  320: *
  321:       ELSE
  322: *
  323: *        ==== copy eigenvalues isolated by DGEBAL ====
  324: *
  325:          DO 10 I = 1, ILO - 1
  326:             WR( I ) = H( I, I )
  327:             WI( I ) = ZERO
  328:    10    CONTINUE
  329:          DO 20 I = IHI + 1, N
  330:             WR( I ) = H( I, I )
  331:             WI( I ) = ZERO
  332:    20    CONTINUE
  333: *
  334: *        ==== Initialize Z, if requested ====
  335: *
  336:          IF( INITZ )
  337:      $      CALL DLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
  338: *
  339: *        ==== Quick return if possible ====
  340: *
  341:          IF( ILO.EQ.IHI ) THEN
  342:             WR( ILO ) = H( ILO, ILO )
  343:             WI( ILO ) = ZERO
  344:             RETURN
  345:          END IF
  346: *
  347: *        ==== DLAHQR/DLAQR0 crossover point ====
  348: *
  349:          NMIN = ILAENV( 12, 'DHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
  350:      $          ILO, IHI, LWORK )
  351:          NMIN = MAX( NTINY, NMIN )
  352: *
  353: *        ==== DLAQR0 for big matrices; DLAHQR for small ones ====
  354: *
  355:          IF( N.GT.NMIN ) THEN
  356:             CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
  357:      $                   IHI, Z, LDZ, WORK, LWORK, INFO )
  358:          ELSE
  359: *
  360: *           ==== Small matrix ====
  361: *
  362:             CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
  363:      $                   IHI, Z, LDZ, INFO )
  364: *
  365:             IF( INFO.GT.0 ) THEN
  366: *
  367: *              ==== A rare DLAHQR failure!  DLAQR0 sometimes succeeds
  368: *              .    when DLAHQR fails. ====
  369: *
  370:                KBOT = INFO
  371: *
  372:                IF( N.GE.NL ) THEN
  373: *
  374: *                 ==== Larger matrices have enough subdiagonal scratch
  375: *                 .    space to call DLAQR0 directly. ====
  376: *
  377:                   CALL DLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR,
  378:      $                         WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
  379: *
  380:                ELSE
  381: *
  382: *                 ==== Tiny matrices don't have enough subdiagonal
  383: *                 .    scratch space to benefit from DLAQR0.  Hence,
  384: *                 .    tiny matrices must be copied into a larger
  385: *                 .    array before calling DLAQR0. ====
  386: *
  387:                   CALL DLACPY( 'A', N, N, H, LDH, HL, NL )
  388:                   HL( N+1, N ) = ZERO
  389:                   CALL DLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
  390:      $                         NL )
  391:                   CALL DLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR,
  392:      $                         WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO )
  393:                   IF( WANTT .OR. INFO.NE.0 )
  394:      $               CALL DLACPY( 'A', N, N, HL, NL, H, LDH )
  395:                END IF
  396:             END IF
  397:          END IF
  398: *
  399: *        ==== Clear out the trash, if necessary. ====
  400: *
  401:          IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
  402:      $      CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
  403: *
  404: *        ==== Ensure reported workspace size is backward-compatible with
  405: *        .    previous LAPACK versions. ====
  406: *
  407:          WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
  408:       END IF
  409: *
  410: *     ==== End of DHSEQR ====
  411: *
  412:       END

CVSweb interface <joel.bertrand@systella.fr>