File:  [local] / rpl / lapack / lapack / dhseqr.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:45:57 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DHSEQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DHSEQR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhseqr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhseqr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhseqr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
   22: *                          LDZ, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
   26: *       CHARACTER          COMPZ, JOB
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
   30: *      $                   Z( LDZ, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *>    DHSEQR computes the eigenvalues of a Hessenberg matrix H
   40: *>    and, optionally, the matrices T and Z from the Schur decomposition
   41: *>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
   42: *>    Schur form), and Z is the orthogonal matrix of Schur vectors.
   43: *>
   44: *>    Optionally Z may be postmultiplied into an input orthogonal
   45: *>    matrix Q so that this routine can give the Schur factorization
   46: *>    of a matrix A which has been reduced to the Hessenberg form H
   47: *>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] JOB
   54: *> \verbatim
   55: *>          JOB is CHARACTER*1
   56: *>           = 'E':  compute eigenvalues only;
   57: *>           = 'S':  compute eigenvalues and the Schur form T.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] COMPZ
   61: *> \verbatim
   62: *>          COMPZ is CHARACTER*1
   63: *>           = 'N':  no Schur vectors are computed;
   64: *>           = 'I':  Z is initialized to the unit matrix and the matrix Z
   65: *>                   of Schur vectors of H is returned;
   66: *>           = 'V':  Z must contain an orthogonal matrix Q on entry, and
   67: *>                   the product Q*Z is returned.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] N
   71: *> \verbatim
   72: *>          N is INTEGER
   73: *>           The order of the matrix H.  N >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] ILO
   77: *> \verbatim
   78: *>          ILO is INTEGER
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IHI
   82: *> \verbatim
   83: *>          IHI is INTEGER
   84: *>
   85: *>           It is assumed that H is already upper triangular in rows
   86: *>           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
   87: *>           set by a previous call to DGEBAL, and then passed to ZGEHRD
   88: *>           when the matrix output by DGEBAL is reduced to Hessenberg
   89: *>           form. Otherwise ILO and IHI should be set to 1 and N
   90: *>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
   91: *>           If N = 0, then ILO = 1 and IHI = 0.
   92: *> \endverbatim
   93: *>
   94: *> \param[in,out] H
   95: *> \verbatim
   96: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
   97: *>           On entry, the upper Hessenberg matrix H.
   98: *>           On exit, if INFO = 0 and JOB = 'S', then H contains the
   99: *>           upper quasi-triangular matrix T from the Schur decomposition
  100: *>           (the Schur form); 2-by-2 diagonal blocks (corresponding to
  101: *>           complex conjugate pairs of eigenvalues) are returned in
  102: *>           standard form, with H(i,i) = H(i+1,i+1) and
  103: *>           H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and JOB = 'E', the
  104: *>           contents of H are unspecified on exit.  (The output value of
  105: *>           H when INFO > 0 is given under the description of INFO
  106: *>           below.)
  107: *>
  108: *>           Unlike earlier versions of DHSEQR, this subroutine may
  109: *>           explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
  110: *>           or j = IHI+1, IHI+2, ... N.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDH
  114: *> \verbatim
  115: *>          LDH is INTEGER
  116: *>           The leading dimension of the array H. LDH >= max(1,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[out] WR
  120: *> \verbatim
  121: *>          WR is DOUBLE PRECISION array, dimension (N)
  122: *> \endverbatim
  123: *>
  124: *> \param[out] WI
  125: *> \verbatim
  126: *>          WI is DOUBLE PRECISION array, dimension (N)
  127: *>
  128: *>           The real and imaginary parts, respectively, of the computed
  129: *>           eigenvalues. If two eigenvalues are computed as a complex
  130: *>           conjugate pair, they are stored in consecutive elements of
  131: *>           WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
  132: *>           WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in
  133: *>           the same order as on the diagonal of the Schur form returned
  134: *>           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
  135: *>           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
  136: *>           WI(i+1) = -WI(i).
  137: *> \endverbatim
  138: *>
  139: *> \param[in,out] Z
  140: *> \verbatim
  141: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
  142: *>           If COMPZ = 'N', Z is not referenced.
  143: *>           If COMPZ = 'I', on entry Z need not be set and on exit,
  144: *>           if INFO = 0, Z contains the orthogonal matrix Z of the Schur
  145: *>           vectors of H.  If COMPZ = 'V', on entry Z must contain an
  146: *>           N-by-N matrix Q, which is assumed to be equal to the unit
  147: *>           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
  148: *>           if INFO = 0, Z contains Q*Z.
  149: *>           Normally Q is the orthogonal matrix generated by DORGHR
  150: *>           after the call to DGEHRD which formed the Hessenberg matrix
  151: *>           H. (The output value of Z when INFO > 0 is given under
  152: *>           the description of INFO below.)
  153: *> \endverbatim
  154: *>
  155: *> \param[in] LDZ
  156: *> \verbatim
  157: *>          LDZ is INTEGER
  158: *>           The leading dimension of the array Z.  if COMPZ = 'I' or
  159: *>           COMPZ = 'V', then LDZ >= MAX(1,N).  Otherwise, LDZ >= 1.
  160: *> \endverbatim
  161: *>
  162: *> \param[out] WORK
  163: *> \verbatim
  164: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
  165: *>           On exit, if INFO = 0, WORK(1) returns an estimate of
  166: *>           the optimal value for LWORK.
  167: *> \endverbatim
  168: *>
  169: *> \param[in] LWORK
  170: *> \verbatim
  171: *>          LWORK is INTEGER
  172: *>           The dimension of the array WORK.  LWORK >= max(1,N)
  173: *>           is sufficient and delivers very good and sometimes
  174: *>           optimal performance.  However, LWORK as large as 11*N
  175: *>           may be required for optimal performance.  A workspace
  176: *>           query is recommended to determine the optimal workspace
  177: *>           size.
  178: *>
  179: *>           If LWORK = -1, then DHSEQR does a workspace query.
  180: *>           In this case, DHSEQR checks the input parameters and
  181: *>           estimates the optimal workspace size for the given
  182: *>           values of N, ILO and IHI.  The estimate is returned
  183: *>           in WORK(1).  No error message related to LWORK is
  184: *>           issued by XERBLA.  Neither H nor Z are accessed.
  185: *> \endverbatim
  186: *>
  187: *> \param[out] INFO
  188: *> \verbatim
  189: *>          INFO is INTEGER
  190: *>             = 0:  successful exit
  191: *>             < 0:  if INFO = -i, the i-th argument had an illegal
  192: *>                    value
  193: *>             > 0:  if INFO = i, DHSEQR failed to compute all of
  194: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
  195: *>                and WI contain those eigenvalues which have been
  196: *>                successfully computed.  (Failures are rare.)
  197: *>
  198: *>                If INFO > 0 and JOB = 'E', then on exit, the
  199: *>                remaining unconverged eigenvalues are the eigen-
  200: *>                values of the upper Hessenberg matrix rows and
  201: *>                columns ILO through INFO of the final, output
  202: *>                value of H.
  203: *>
  204: *>                If INFO > 0 and JOB   = 'S', then on exit
  205: *>
  206: *>           (*)  (initial value of H)*U  = U*(final value of H)
  207: *>
  208: *>                where U is an orthogonal matrix.  The final
  209: *>                value of H is upper Hessenberg and quasi-triangular
  210: *>                in rows and columns INFO+1 through IHI.
  211: *>
  212: *>                If INFO > 0 and COMPZ = 'V', then on exit
  213: *>
  214: *>                  (final value of Z)  =  (initial value of Z)*U
  215: *>
  216: *>                where U is the orthogonal matrix in (*) (regard-
  217: *>                less of the value of JOB.)
  218: *>
  219: *>                If INFO > 0 and COMPZ = 'I', then on exit
  220: *>                      (final value of Z)  = U
  221: *>                where U is the orthogonal matrix in (*) (regard-
  222: *>                less of the value of JOB.)
  223: *>
  224: *>                If INFO > 0 and COMPZ = 'N', then Z is not
  225: *>                accessed.
  226: *> \endverbatim
  227: *
  228: *  Authors:
  229: *  ========
  230: *
  231: *> \author Univ. of Tennessee
  232: *> \author Univ. of California Berkeley
  233: *> \author Univ. of Colorado Denver
  234: *> \author NAG Ltd.
  235: *
  236: *> \date December 2016
  237: *
  238: *> \ingroup doubleOTHERcomputational
  239: *
  240: *> \par Contributors:
  241: *  ==================
  242: *>
  243: *>       Karen Braman and Ralph Byers, Department of Mathematics,
  244: *>       University of Kansas, USA
  245: *
  246: *> \par Further Details:
  247: *  =====================
  248: *>
  249: *> \verbatim
  250: *>
  251: *>             Default values supplied by
  252: *>             ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
  253: *>             It is suggested that these defaults be adjusted in order
  254: *>             to attain best performance in each particular
  255: *>             computational environment.
  256: *>
  257: *>            ISPEC=12: The DLAHQR vs DLAQR0 crossover point.
  258: *>                      Default: 75. (Must be at least 11.)
  259: *>
  260: *>            ISPEC=13: Recommended deflation window size.
  261: *>                      This depends on ILO, IHI and NS.  NS is the
  262: *>                      number of simultaneous shifts returned
  263: *>                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
  264: *>                      The default for (IHI-ILO+1) <= 500 is NS.
  265: *>                      The default for (IHI-ILO+1) >  500 is 3*NS/2.
  266: *>
  267: *>            ISPEC=14: Nibble crossover point. (See IPARMQ for
  268: *>                      details.)  Default: 14% of deflation window
  269: *>                      size.
  270: *>
  271: *>            ISPEC=15: Number of simultaneous shifts in a multishift
  272: *>                      QR iteration.
  273: *>
  274: *>                      If IHI-ILO+1 is ...
  275: *>
  276: *>                      greater than      ...but less    ... the
  277: *>                      or equal to ...      than        default is
  278: *>
  279: *>                           1               30          NS =   2(+)
  280: *>                          30               60          NS =   4(+)
  281: *>                          60              150          NS =  10(+)
  282: *>                         150              590          NS =  **
  283: *>                         590             3000          NS =  64
  284: *>                        3000             6000          NS = 128
  285: *>                        6000             infinity      NS = 256
  286: *>
  287: *>                  (+)  By default some or all matrices of this order
  288: *>                       are passed to the implicit double shift routine
  289: *>                       DLAHQR and this parameter is ignored.  See
  290: *>                       ISPEC=12 above and comments in IPARMQ for
  291: *>                       details.
  292: *>
  293: *>                 (**)  The asterisks (**) indicate an ad-hoc
  294: *>                       function of N increasing from 10 to 64.
  295: *>
  296: *>            ISPEC=16: Select structured matrix multiply.
  297: *>                      If the number of simultaneous shifts (specified
  298: *>                      by ISPEC=15) is less than 14, then the default
  299: *>                      for ISPEC=16 is 0.  Otherwise the default for
  300: *>                      ISPEC=16 is 2.
  301: *> \endverbatim
  302: *
  303: *> \par References:
  304: *  ================
  305: *>
  306: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  307: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  308: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  309: *>       929--947, 2002.
  310: *> \n
  311: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  312: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
  313: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
  314: *
  315: *  =====================================================================
  316:       SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
  317:      $                   LDZ, WORK, LWORK, INFO )
  318: *
  319: *  -- LAPACK computational routine (version 3.7.0) --
  320: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  321: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  322: *     December 2016
  323: *
  324: *     .. Scalar Arguments ..
  325:       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
  326:       CHARACTER          COMPZ, JOB
  327: *     ..
  328: *     .. Array Arguments ..
  329:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
  330:      $                   Z( LDZ, * )
  331: *     ..
  332: *
  333: *  =====================================================================
  334: *
  335: *     .. Parameters ..
  336: *
  337: *     ==== Matrices of order NTINY or smaller must be processed by
  338: *     .    DLAHQR because of insufficient subdiagonal scratch space.
  339: *     .    (This is a hard limit.) ====
  340:       INTEGER            NTINY
  341:       PARAMETER          ( NTINY = 11 )
  342: *
  343: *     ==== NL allocates some local workspace to help small matrices
  344: *     .    through a rare DLAHQR failure.  NL > NTINY = 11 is
  345: *     .    required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
  346: *     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
  347: *     .    allows up to six simultaneous shifts and a 16-by-16
  348: *     .    deflation window.  ====
  349:       INTEGER            NL
  350:       PARAMETER          ( NL = 49 )
  351:       DOUBLE PRECISION   ZERO, ONE
  352:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
  353: *     ..
  354: *     .. Local Arrays ..
  355:       DOUBLE PRECISION   HL( NL, NL ), WORKL( NL )
  356: *     ..
  357: *     .. Local Scalars ..
  358:       INTEGER            I, KBOT, NMIN
  359:       LOGICAL            INITZ, LQUERY, WANTT, WANTZ
  360: *     ..
  361: *     .. External Functions ..
  362:       INTEGER            ILAENV
  363:       LOGICAL            LSAME
  364:       EXTERNAL           ILAENV, LSAME
  365: *     ..
  366: *     .. External Subroutines ..
  367:       EXTERNAL           DLACPY, DLAHQR, DLAQR0, DLASET, XERBLA
  368: *     ..
  369: *     .. Intrinsic Functions ..
  370:       INTRINSIC          DBLE, MAX, MIN
  371: *     ..
  372: *     .. Executable Statements ..
  373: *
  374: *     ==== Decode and check the input parameters. ====
  375: *
  376:       WANTT = LSAME( JOB, 'S' )
  377:       INITZ = LSAME( COMPZ, 'I' )
  378:       WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
  379:       WORK( 1 ) = DBLE( MAX( 1, N ) )
  380:       LQUERY = LWORK.EQ.-1
  381: *
  382:       INFO = 0
  383:       IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
  384:          INFO = -1
  385:       ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
  386:          INFO = -2
  387:       ELSE IF( N.LT.0 ) THEN
  388:          INFO = -3
  389:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
  390:          INFO = -4
  391:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
  392:          INFO = -5
  393:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
  394:          INFO = -7
  395:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
  396:          INFO = -11
  397:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  398:          INFO = -13
  399:       END IF
  400: *
  401:       IF( INFO.NE.0 ) THEN
  402: *
  403: *        ==== Quick return in case of invalid argument. ====
  404: *
  405:          CALL XERBLA( 'DHSEQR', -INFO )
  406:          RETURN
  407: *
  408:       ELSE IF( N.EQ.0 ) THEN
  409: *
  410: *        ==== Quick return in case N = 0; nothing to do. ====
  411: *
  412:          RETURN
  413: *
  414:       ELSE IF( LQUERY ) THEN
  415: *
  416: *        ==== Quick return in case of a workspace query ====
  417: *
  418:          CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
  419:      $                IHI, Z, LDZ, WORK, LWORK, INFO )
  420: *        ==== Ensure reported workspace size is backward-compatible with
  421: *        .    previous LAPACK versions. ====
  422:          WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
  423:          RETURN
  424: *
  425:       ELSE
  426: *
  427: *        ==== copy eigenvalues isolated by DGEBAL ====
  428: *
  429:          DO 10 I = 1, ILO - 1
  430:             WR( I ) = H( I, I )
  431:             WI( I ) = ZERO
  432:    10    CONTINUE
  433:          DO 20 I = IHI + 1, N
  434:             WR( I ) = H( I, I )
  435:             WI( I ) = ZERO
  436:    20    CONTINUE
  437: *
  438: *        ==== Initialize Z, if requested ====
  439: *
  440:          IF( INITZ )
  441:      $      CALL DLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
  442: *
  443: *        ==== Quick return if possible ====
  444: *
  445:          IF( ILO.EQ.IHI ) THEN
  446:             WR( ILO ) = H( ILO, ILO )
  447:             WI( ILO ) = ZERO
  448:             RETURN
  449:          END IF
  450: *
  451: *        ==== DLAHQR/DLAQR0 crossover point ====
  452: *
  453:          NMIN = ILAENV( 12, 'DHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
  454:      $          ILO, IHI, LWORK )
  455:          NMIN = MAX( NTINY, NMIN )
  456: *
  457: *        ==== DLAQR0 for big matrices; DLAHQR for small ones ====
  458: *
  459:          IF( N.GT.NMIN ) THEN
  460:             CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
  461:      $                   IHI, Z, LDZ, WORK, LWORK, INFO )
  462:          ELSE
  463: *
  464: *           ==== Small matrix ====
  465: *
  466:             CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
  467:      $                   IHI, Z, LDZ, INFO )
  468: *
  469:             IF( INFO.GT.0 ) THEN
  470: *
  471: *              ==== A rare DLAHQR failure!  DLAQR0 sometimes succeeds
  472: *              .    when DLAHQR fails. ====
  473: *
  474:                KBOT = INFO
  475: *
  476:                IF( N.GE.NL ) THEN
  477: *
  478: *                 ==== Larger matrices have enough subdiagonal scratch
  479: *                 .    space to call DLAQR0 directly. ====
  480: *
  481:                   CALL DLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR,
  482:      $                         WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
  483: *
  484:                ELSE
  485: *
  486: *                 ==== Tiny matrices don't have enough subdiagonal
  487: *                 .    scratch space to benefit from DLAQR0.  Hence,
  488: *                 .    tiny matrices must be copied into a larger
  489: *                 .    array before calling DLAQR0. ====
  490: *
  491:                   CALL DLACPY( 'A', N, N, H, LDH, HL, NL )
  492:                   HL( N+1, N ) = ZERO
  493:                   CALL DLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
  494:      $                         NL )
  495:                   CALL DLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR,
  496:      $                         WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO )
  497:                   IF( WANTT .OR. INFO.NE.0 )
  498:      $               CALL DLACPY( 'A', N, N, HL, NL, H, LDH )
  499:                END IF
  500:             END IF
  501:          END IF
  502: *
  503: *        ==== Clear out the trash, if necessary. ====
  504: *
  505:          IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
  506:      $      CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
  507: *
  508: *        ==== Ensure reported workspace size is backward-compatible with
  509: *        .    previous LAPACK versions. ====
  510: *
  511:          WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
  512:       END IF
  513: *
  514: *     ==== End of DHSEQR ====
  515: *
  516:       END

CVSweb interface <joel.bertrand@systella.fr>