Annotation of rpl/lapack/lapack/dhseqr.f, revision 1.16

1.9       bertrand    1: *> \brief \b DHSEQR
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DHSEQR + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhseqr.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhseqr.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhseqr.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
                     22: *                          LDZ, WORK, LWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
                     26: *       CHARACTER          COMPZ, JOB
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
                     30: *      $                   Z( LDZ, * )
                     31: *       ..
1.15      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *>    DHSEQR computes the eigenvalues of a Hessenberg matrix H
                     40: *>    and, optionally, the matrices T and Z from the Schur decomposition
                     41: *>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
                     42: *>    Schur form), and Z is the orthogonal matrix of Schur vectors.
                     43: *>
                     44: *>    Optionally Z may be postmultiplied into an input orthogonal
                     45: *>    matrix Q so that this routine can give the Schur factorization
                     46: *>    of a matrix A which has been reduced to the Hessenberg form H
                     47: *>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
                     48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] JOB
                     54: *> \verbatim
                     55: *>          JOB is CHARACTER*1
                     56: *>           = 'E':  compute eigenvalues only;
                     57: *>           = 'S':  compute eigenvalues and the Schur form T.
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] COMPZ
                     61: *> \verbatim
                     62: *>          COMPZ is CHARACTER*1
                     63: *>           = 'N':  no Schur vectors are computed;
                     64: *>           = 'I':  Z is initialized to the unit matrix and the matrix Z
                     65: *>                   of Schur vectors of H is returned;
                     66: *>           = 'V':  Z must contain an orthogonal matrix Q on entry, and
                     67: *>                   the product Q*Z is returned.
                     68: *> \endverbatim
                     69: *>
                     70: *> \param[in] N
                     71: *> \verbatim
                     72: *>          N is INTEGER
                     73: *>           The order of the matrix H.  N .GE. 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] ILO
                     77: *> \verbatim
                     78: *>          ILO is INTEGER
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] IHI
                     82: *> \verbatim
                     83: *>          IHI is INTEGER
                     84: *>
                     85: *>           It is assumed that H is already upper triangular in rows
                     86: *>           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
                     87: *>           set by a previous call to DGEBAL, and then passed to ZGEHRD
                     88: *>           when the matrix output by DGEBAL is reduced to Hessenberg
                     89: *>           form. Otherwise ILO and IHI should be set to 1 and N
                     90: *>           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
                     91: *>           If N = 0, then ILO = 1 and IHI = 0.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in,out] H
                     95: *> \verbatim
                     96: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
                     97: *>           On entry, the upper Hessenberg matrix H.
                     98: *>           On exit, if INFO = 0 and JOB = 'S', then H contains the
                     99: *>           upper quasi-triangular matrix T from the Schur decomposition
                    100: *>           (the Schur form); 2-by-2 diagonal blocks (corresponding to
                    101: *>           complex conjugate pairs of eigenvalues) are returned in
                    102: *>           standard form, with H(i,i) = H(i+1,i+1) and
                    103: *>           H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
                    104: *>           contents of H are unspecified on exit.  (The output value of
                    105: *>           H when INFO.GT.0 is given under the description of INFO
                    106: *>           below.)
                    107: *>
                    108: *>           Unlike earlier versions of DHSEQR, this subroutine may
                    109: *>           explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
                    110: *>           or j = IHI+1, IHI+2, ... N.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] LDH
                    114: *> \verbatim
                    115: *>          LDH is INTEGER
                    116: *>           The leading dimension of the array H. LDH .GE. max(1,N).
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[out] WR
                    120: *> \verbatim
                    121: *>          WR is DOUBLE PRECISION array, dimension (N)
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] WI
                    125: *> \verbatim
                    126: *>          WI is DOUBLE PRECISION array, dimension (N)
                    127: *>
                    128: *>           The real and imaginary parts, respectively, of the computed
                    129: *>           eigenvalues. If two eigenvalues are computed as a complex
                    130: *>           conjugate pair, they are stored in consecutive elements of
                    131: *>           WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
                    132: *>           WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
                    133: *>           the same order as on the diagonal of the Schur form returned
                    134: *>           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
                    135: *>           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
                    136: *>           WI(i+1) = -WI(i).
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in,out] Z
                    140: *> \verbatim
                    141: *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
                    142: *>           If COMPZ = 'N', Z is not referenced.
                    143: *>           If COMPZ = 'I', on entry Z need not be set and on exit,
                    144: *>           if INFO = 0, Z contains the orthogonal matrix Z of the Schur
                    145: *>           vectors of H.  If COMPZ = 'V', on entry Z must contain an
                    146: *>           N-by-N matrix Q, which is assumed to be equal to the unit
                    147: *>           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
                    148: *>           if INFO = 0, Z contains Q*Z.
                    149: *>           Normally Q is the orthogonal matrix generated by DORGHR
                    150: *>           after the call to DGEHRD which formed the Hessenberg matrix
                    151: *>           H. (The output value of Z when INFO.GT.0 is given under
                    152: *>           the description of INFO below.)
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[in] LDZ
                    156: *> \verbatim
                    157: *>          LDZ is INTEGER
                    158: *>           The leading dimension of the array Z.  if COMPZ = 'I' or
                    159: *>           COMPZ = 'V', then LDZ.GE.MAX(1,N).  Otherwize, LDZ.GE.1.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] WORK
                    163: *> \verbatim
                    164: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                    165: *>           On exit, if INFO = 0, WORK(1) returns an estimate of
                    166: *>           the optimal value for LWORK.
                    167: *> \endverbatim
                    168: *>
                    169: *> \param[in] LWORK
                    170: *> \verbatim
                    171: *>          LWORK is INTEGER
                    172: *>           The dimension of the array WORK.  LWORK .GE. max(1,N)
                    173: *>           is sufficient and delivers very good and sometimes
                    174: *>           optimal performance.  However, LWORK as large as 11*N
                    175: *>           may be required for optimal performance.  A workspace
                    176: *>           query is recommended to determine the optimal workspace
                    177: *>           size.
                    178: *>
                    179: *>           If LWORK = -1, then DHSEQR does a workspace query.
                    180: *>           In this case, DHSEQR checks the input parameters and
                    181: *>           estimates the optimal workspace size for the given
                    182: *>           values of N, ILO and IHI.  The estimate is returned
                    183: *>           in WORK(1).  No error message related to LWORK is
                    184: *>           issued by XERBLA.  Neither H nor Z are accessed.
                    185: *> \endverbatim
                    186: *>
                    187: *> \param[out] INFO
                    188: *> \verbatim
                    189: *>          INFO is INTEGER
                    190: *>             =  0:  successful exit
                    191: *>           .LT. 0:  if INFO = -i, the i-th argument had an illegal
                    192: *>                    value
                    193: *>           .GT. 0:  if INFO = i, DHSEQR failed to compute all of
                    194: *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                    195: *>                and WI contain those eigenvalues which have been
                    196: *>                successfully computed.  (Failures are rare.)
                    197: *>
                    198: *>                If INFO .GT. 0 and JOB = 'E', then on exit, the
                    199: *>                remaining unconverged eigenvalues are the eigen-
                    200: *>                values of the upper Hessenberg matrix rows and
                    201: *>                columns ILO through INFO of the final, output
                    202: *>                value of H.
                    203: *>
                    204: *>                If INFO .GT. 0 and JOB   = 'S', then on exit
                    205: *>
                    206: *>           (*)  (initial value of H)*U  = U*(final value of H)
                    207: *>
                    208: *>                where U is an orthogonal matrix.  The final
                    209: *>                value of H is upper Hessenberg and quasi-triangular
                    210: *>                in rows and columns INFO+1 through IHI.
                    211: *>
                    212: *>                If INFO .GT. 0 and COMPZ = 'V', then on exit
                    213: *>
                    214: *>                  (final value of Z)  =  (initial value of Z)*U
                    215: *>
                    216: *>                where U is the orthogonal matrix in (*) (regard-
                    217: *>                less of the value of JOB.)
                    218: *>
                    219: *>                If INFO .GT. 0 and COMPZ = 'I', then on exit
                    220: *>                      (final value of Z)  = U
                    221: *>                where U is the orthogonal matrix in (*) (regard-
                    222: *>                less of the value of JOB.)
                    223: *>
                    224: *>                If INFO .GT. 0 and COMPZ = 'N', then Z is not
                    225: *>                accessed.
                    226: *> \endverbatim
                    227: *
                    228: *  Authors:
                    229: *  ========
                    230: *
1.15      bertrand  231: *> \author Univ. of Tennessee
                    232: *> \author Univ. of California Berkeley
                    233: *> \author Univ. of Colorado Denver
                    234: *> \author NAG Ltd.
1.9       bertrand  235: *
1.15      bertrand  236: *> \date December 2016
1.9       bertrand  237: *
                    238: *> \ingroup doubleOTHERcomputational
                    239: *
                    240: *> \par Contributors:
                    241: *  ==================
                    242: *>
                    243: *>       Karen Braman and Ralph Byers, Department of Mathematics,
                    244: *>       University of Kansas, USA
                    245: *
                    246: *> \par Further Details:
                    247: *  =====================
                    248: *>
                    249: *> \verbatim
                    250: *>
                    251: *>             Default values supplied by
                    252: *>             ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
                    253: *>             It is suggested that these defaults be adjusted in order
                    254: *>             to attain best performance in each particular
                    255: *>             computational environment.
                    256: *>
                    257: *>            ISPEC=12: The DLAHQR vs DLAQR0 crossover point.
                    258: *>                      Default: 75. (Must be at least 11.)
                    259: *>
                    260: *>            ISPEC=13: Recommended deflation window size.
                    261: *>                      This depends on ILO, IHI and NS.  NS is the
                    262: *>                      number of simultaneous shifts returned
                    263: *>                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
                    264: *>                      The default for (IHI-ILO+1).LE.500 is NS.
                    265: *>                      The default for (IHI-ILO+1).GT.500 is 3*NS/2.
                    266: *>
                    267: *>            ISPEC=14: Nibble crossover point. (See IPARMQ for
                    268: *>                      details.)  Default: 14% of deflation window
                    269: *>                      size.
                    270: *>
                    271: *>            ISPEC=15: Number of simultaneous shifts in a multishift
                    272: *>                      QR iteration.
                    273: *>
                    274: *>                      If IHI-ILO+1 is ...
                    275: *>
                    276: *>                      greater than      ...but less    ... the
                    277: *>                      or equal to ...      than        default is
                    278: *>
                    279: *>                           1               30          NS =   2(+)
                    280: *>                          30               60          NS =   4(+)
                    281: *>                          60              150          NS =  10(+)
                    282: *>                         150              590          NS =  **
                    283: *>                         590             3000          NS =  64
                    284: *>                        3000             6000          NS = 128
                    285: *>                        6000             infinity      NS = 256
                    286: *>
                    287: *>                  (+)  By default some or all matrices of this order
                    288: *>                       are passed to the implicit double shift routine
                    289: *>                       DLAHQR and this parameter is ignored.  See
                    290: *>                       ISPEC=12 above and comments in IPARMQ for
                    291: *>                       details.
                    292: *>
                    293: *>                 (**)  The asterisks (**) indicate an ad-hoc
                    294: *>                       function of N increasing from 10 to 64.
                    295: *>
                    296: *>            ISPEC=16: Select structured matrix multiply.
                    297: *>                      If the number of simultaneous shifts (specified
                    298: *>                      by ISPEC=15) is less than 14, then the default
                    299: *>                      for ISPEC=16 is 0.  Otherwise the default for
                    300: *>                      ISPEC=16 is 2.
                    301: *> \endverbatim
                    302: *
                    303: *> \par References:
                    304: *  ================
                    305: *>
                    306: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    307: *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
                    308: *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
                    309: *>       929--947, 2002.
                    310: *> \n
                    311: *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
                    312: *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
                    313: *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
                    314: *
                    315: *  =====================================================================
1.1       bertrand  316:       SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
                    317:      $                   LDZ, WORK, LWORK, INFO )
                    318: *
1.15      bertrand  319: *  -- LAPACK computational routine (version 3.7.0) --
1.9       bertrand  320: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    321: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  322: *     December 2016
1.1       bertrand  323: *
                    324: *     .. Scalar Arguments ..
                    325:       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
                    326:       CHARACTER          COMPZ, JOB
                    327: *     ..
                    328: *     .. Array Arguments ..
                    329:       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
                    330:      $                   Z( LDZ, * )
                    331: *     ..
                    332: *
1.9       bertrand  333: *  =====================================================================
1.1       bertrand  334: *
                    335: *     .. Parameters ..
                    336: *
                    337: *     ==== Matrices of order NTINY or smaller must be processed by
                    338: *     .    DLAHQR because of insufficient subdiagonal scratch space.
                    339: *     .    (This is a hard limit.) ====
                    340:       INTEGER            NTINY
                    341:       PARAMETER          ( NTINY = 11 )
                    342: *
                    343: *     ==== NL allocates some local workspace to help small matrices
                    344: *     .    through a rare DLAHQR failure.  NL .GT. NTINY = 11 is
                    345: *     .    required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
                    346: *     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
                    347: *     .    allows up to six simultaneous shifts and a 16-by-16
                    348: *     .    deflation window.  ====
                    349:       INTEGER            NL
                    350:       PARAMETER          ( NL = 49 )
                    351:       DOUBLE PRECISION   ZERO, ONE
                    352:       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
                    353: *     ..
                    354: *     .. Local Arrays ..
                    355:       DOUBLE PRECISION   HL( NL, NL ), WORKL( NL )
                    356: *     ..
                    357: *     .. Local Scalars ..
                    358:       INTEGER            I, KBOT, NMIN
                    359:       LOGICAL            INITZ, LQUERY, WANTT, WANTZ
                    360: *     ..
                    361: *     .. External Functions ..
                    362:       INTEGER            ILAENV
                    363:       LOGICAL            LSAME
                    364:       EXTERNAL           ILAENV, LSAME
                    365: *     ..
                    366: *     .. External Subroutines ..
                    367:       EXTERNAL           DLACPY, DLAHQR, DLAQR0, DLASET, XERBLA
                    368: *     ..
                    369: *     .. Intrinsic Functions ..
                    370:       INTRINSIC          DBLE, MAX, MIN
                    371: *     ..
                    372: *     .. Executable Statements ..
                    373: *
                    374: *     ==== Decode and check the input parameters. ====
                    375: *
                    376:       WANTT = LSAME( JOB, 'S' )
                    377:       INITZ = LSAME( COMPZ, 'I' )
                    378:       WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
                    379:       WORK( 1 ) = DBLE( MAX( 1, N ) )
                    380:       LQUERY = LWORK.EQ.-1
                    381: *
                    382:       INFO = 0
                    383:       IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
                    384:          INFO = -1
                    385:       ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
                    386:          INFO = -2
                    387:       ELSE IF( N.LT.0 ) THEN
                    388:          INFO = -3
                    389:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
                    390:          INFO = -4
                    391:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
                    392:          INFO = -5
                    393:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
                    394:          INFO = -7
                    395:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
                    396:          INFO = -11
                    397:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    398:          INFO = -13
                    399:       END IF
                    400: *
                    401:       IF( INFO.NE.0 ) THEN
                    402: *
                    403: *        ==== Quick return in case of invalid argument. ====
                    404: *
                    405:          CALL XERBLA( 'DHSEQR', -INFO )
                    406:          RETURN
                    407: *
                    408:       ELSE IF( N.EQ.0 ) THEN
                    409: *
                    410: *        ==== Quick return in case N = 0; nothing to do. ====
                    411: *
                    412:          RETURN
                    413: *
                    414:       ELSE IF( LQUERY ) THEN
                    415: *
                    416: *        ==== Quick return in case of a workspace query ====
                    417: *
                    418:          CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
                    419:      $                IHI, Z, LDZ, WORK, LWORK, INFO )
                    420: *        ==== Ensure reported workspace size is backward-compatible with
                    421: *        .    previous LAPACK versions. ====
                    422:          WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
                    423:          RETURN
                    424: *
                    425:       ELSE
                    426: *
                    427: *        ==== copy eigenvalues isolated by DGEBAL ====
                    428: *
                    429:          DO 10 I = 1, ILO - 1
                    430:             WR( I ) = H( I, I )
                    431:             WI( I ) = ZERO
                    432:    10    CONTINUE
                    433:          DO 20 I = IHI + 1, N
                    434:             WR( I ) = H( I, I )
                    435:             WI( I ) = ZERO
                    436:    20    CONTINUE
                    437: *
                    438: *        ==== Initialize Z, if requested ====
                    439: *
                    440:          IF( INITZ )
                    441:      $      CALL DLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
                    442: *
                    443: *        ==== Quick return if possible ====
                    444: *
                    445:          IF( ILO.EQ.IHI ) THEN
                    446:             WR( ILO ) = H( ILO, ILO )
                    447:             WI( ILO ) = ZERO
                    448:             RETURN
                    449:          END IF
                    450: *
                    451: *        ==== DLAHQR/DLAQR0 crossover point ====
                    452: *
                    453:          NMIN = ILAENV( 12, 'DHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
                    454:      $          ILO, IHI, LWORK )
                    455:          NMIN = MAX( NTINY, NMIN )
                    456: *
                    457: *        ==== DLAQR0 for big matrices; DLAHQR for small ones ====
                    458: *
                    459:          IF( N.GT.NMIN ) THEN
                    460:             CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
                    461:      $                   IHI, Z, LDZ, WORK, LWORK, INFO )
                    462:          ELSE
                    463: *
                    464: *           ==== Small matrix ====
                    465: *
                    466:             CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
                    467:      $                   IHI, Z, LDZ, INFO )
                    468: *
                    469:             IF( INFO.GT.0 ) THEN
                    470: *
                    471: *              ==== A rare DLAHQR failure!  DLAQR0 sometimes succeeds
                    472: *              .    when DLAHQR fails. ====
                    473: *
                    474:                KBOT = INFO
                    475: *
                    476:                IF( N.GE.NL ) THEN
                    477: *
                    478: *                 ==== Larger matrices have enough subdiagonal scratch
                    479: *                 .    space to call DLAQR0 directly. ====
                    480: *
                    481:                   CALL DLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR,
                    482:      $                         WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
                    483: *
                    484:                ELSE
                    485: *
                    486: *                 ==== Tiny matrices don't have enough subdiagonal
                    487: *                 .    scratch space to benefit from DLAQR0.  Hence,
                    488: *                 .    tiny matrices must be copied into a larger
                    489: *                 .    array before calling DLAQR0. ====
                    490: *
                    491:                   CALL DLACPY( 'A', N, N, H, LDH, HL, NL )
                    492:                   HL( N+1, N ) = ZERO
                    493:                   CALL DLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
                    494:      $                         NL )
                    495:                   CALL DLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR,
                    496:      $                         WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO )
                    497:                   IF( WANTT .OR. INFO.NE.0 )
                    498:      $               CALL DLACPY( 'A', N, N, HL, NL, H, LDH )
                    499:                END IF
                    500:             END IF
                    501:          END IF
                    502: *
                    503: *        ==== Clear out the trash, if necessary. ====
                    504: *
                    505:          IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
                    506:      $      CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
                    507: *
                    508: *        ==== Ensure reported workspace size is backward-compatible with
                    509: *        .    previous LAPACK versions. ====
                    510: *
                    511:          WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
                    512:       END IF
                    513: *
                    514: *     ==== End of DHSEQR ====
                    515: *
                    516:       END

CVSweb interface <joel.bertrand@systella.fr>