File:  [local] / rpl / lapack / lapack / dhsein.f
Revision 1.9: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:29 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b DHSEIN
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DHSEIN + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhsein.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhsein.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhsein.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
   22: *                          VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
   23: *                          IFAILR, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          EIGSRC, INITV, SIDE
   27: *       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            SELECT( * )
   31: *       INTEGER            IFAILL( * ), IFAILR( * )
   32: *       DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
   33: *      $                   WI( * ), WORK( * ), WR( * )
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DHSEIN uses inverse iteration to find specified right and/or left
   43: *> eigenvectors of a real upper Hessenberg matrix H.
   44: *>
   45: *> The right eigenvector x and the left eigenvector y of the matrix H
   46: *> corresponding to an eigenvalue w are defined by:
   47: *>
   48: *>              H * x = w * x,     y**h * H = w * y**h
   49: *>
   50: *> where y**h denotes the conjugate transpose of the vector y.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] SIDE
   57: *> \verbatim
   58: *>          SIDE is CHARACTER*1
   59: *>          = 'R': compute right eigenvectors only;
   60: *>          = 'L': compute left eigenvectors only;
   61: *>          = 'B': compute both right and left eigenvectors.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] EIGSRC
   65: *> \verbatim
   66: *>          EIGSRC is CHARACTER*1
   67: *>          Specifies the source of eigenvalues supplied in (WR,WI):
   68: *>          = 'Q': the eigenvalues were found using DHSEQR; thus, if
   69: *>                 H has zero subdiagonal elements, and so is
   70: *>                 block-triangular, then the j-th eigenvalue can be
   71: *>                 assumed to be an eigenvalue of the block containing
   72: *>                 the j-th row/column.  This property allows DHSEIN to
   73: *>                 perform inverse iteration on just one diagonal block.
   74: *>          = 'N': no assumptions are made on the correspondence
   75: *>                 between eigenvalues and diagonal blocks.  In this
   76: *>                 case, DHSEIN must always perform inverse iteration
   77: *>                 using the whole matrix H.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] INITV
   81: *> \verbatim
   82: *>          INITV is CHARACTER*1
   83: *>          = 'N': no initial vectors are supplied;
   84: *>          = 'U': user-supplied initial vectors are stored in the arrays
   85: *>                 VL and/or VR.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] SELECT
   89: *> \verbatim
   90: *>          SELECT is LOGICAL array, dimension (N)
   91: *>          Specifies the eigenvectors to be computed. To select the
   92: *>          real eigenvector corresponding to a real eigenvalue WR(j),
   93: *>          SELECT(j) must be set to .TRUE.. To select the complex
   94: *>          eigenvector corresponding to a complex eigenvalue
   95: *>          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
   96: *>          either SELECT(j) or SELECT(j+1) or both must be set to
   97: *>          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
   98: *>          .FALSE..
   99: *> \endverbatim
  100: *>
  101: *> \param[in] N
  102: *> \verbatim
  103: *>          N is INTEGER
  104: *>          The order of the matrix H.  N >= 0.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] H
  108: *> \verbatim
  109: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
  110: *>          The upper Hessenberg matrix H.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDH
  114: *> \verbatim
  115: *>          LDH is INTEGER
  116: *>          The leading dimension of the array H.  LDH >= max(1,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[in,out] WR
  120: *> \verbatim
  121: *>          WR is DOUBLE PRECISION array, dimension (N)
  122: *> \endverbatim
  123: *>
  124: *> \param[in] WI
  125: *> \verbatim
  126: *>          WI is DOUBLE PRECISION array, dimension (N)
  127: *>
  128: *>          On entry, the real and imaginary parts of the eigenvalues of
  129: *>          H; a complex conjugate pair of eigenvalues must be stored in
  130: *>          consecutive elements of WR and WI.
  131: *>          On exit, WR may have been altered since close eigenvalues
  132: *>          are perturbed slightly in searching for independent
  133: *>          eigenvectors.
  134: *> \endverbatim
  135: *>
  136: *> \param[in,out] VL
  137: *> \verbatim
  138: *>          VL is DOUBLE PRECISION array, dimension (LDVL,MM)
  139: *>          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
  140: *>          contain starting vectors for the inverse iteration for the
  141: *>          left eigenvectors; the starting vector for each eigenvector
  142: *>          must be in the same column(s) in which the eigenvector will
  143: *>          be stored.
  144: *>          On exit, if SIDE = 'L' or 'B', the left eigenvectors
  145: *>          specified by SELECT will be stored consecutively in the
  146: *>          columns of VL, in the same order as their eigenvalues. A
  147: *>          complex eigenvector corresponding to a complex eigenvalue is
  148: *>          stored in two consecutive columns, the first holding the real
  149: *>          part and the second the imaginary part.
  150: *>          If SIDE = 'R', VL is not referenced.
  151: *> \endverbatim
  152: *>
  153: *> \param[in] LDVL
  154: *> \verbatim
  155: *>          LDVL is INTEGER
  156: *>          The leading dimension of the array VL.
  157: *>          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
  158: *> \endverbatim
  159: *>
  160: *> \param[in,out] VR
  161: *> \verbatim
  162: *>          VR is DOUBLE PRECISION array, dimension (LDVR,MM)
  163: *>          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
  164: *>          contain starting vectors for the inverse iteration for the
  165: *>          right eigenvectors; the starting vector for each eigenvector
  166: *>          must be in the same column(s) in which the eigenvector will
  167: *>          be stored.
  168: *>          On exit, if SIDE = 'R' or 'B', the right eigenvectors
  169: *>          specified by SELECT will be stored consecutively in the
  170: *>          columns of VR, in the same order as their eigenvalues. A
  171: *>          complex eigenvector corresponding to a complex eigenvalue is
  172: *>          stored in two consecutive columns, the first holding the real
  173: *>          part and the second the imaginary part.
  174: *>          If SIDE = 'L', VR is not referenced.
  175: *> \endverbatim
  176: *>
  177: *> \param[in] LDVR
  178: *> \verbatim
  179: *>          LDVR is INTEGER
  180: *>          The leading dimension of the array VR.
  181: *>          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
  182: *> \endverbatim
  183: *>
  184: *> \param[in] MM
  185: *> \verbatim
  186: *>          MM is INTEGER
  187: *>          The number of columns in the arrays VL and/or VR. MM >= M.
  188: *> \endverbatim
  189: *>
  190: *> \param[out] M
  191: *> \verbatim
  192: *>          M is INTEGER
  193: *>          The number of columns in the arrays VL and/or VR required to
  194: *>          store the eigenvectors; each selected real eigenvector
  195: *>          occupies one column and each selected complex eigenvector
  196: *>          occupies two columns.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] WORK
  200: *> \verbatim
  201: *>          WORK is DOUBLE PRECISION array, dimension ((N+2)*N)
  202: *> \endverbatim
  203: *>
  204: *> \param[out] IFAILL
  205: *> \verbatim
  206: *>          IFAILL is INTEGER array, dimension (MM)
  207: *>          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
  208: *>          eigenvector in the i-th column of VL (corresponding to the
  209: *>          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
  210: *>          eigenvector converged satisfactorily. If the i-th and (i+1)th
  211: *>          columns of VL hold a complex eigenvector, then IFAILL(i) and
  212: *>          IFAILL(i+1) are set to the same value.
  213: *>          If SIDE = 'R', IFAILL is not referenced.
  214: *> \endverbatim
  215: *>
  216: *> \param[out] IFAILR
  217: *> \verbatim
  218: *>          IFAILR is INTEGER array, dimension (MM)
  219: *>          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
  220: *>          eigenvector in the i-th column of VR (corresponding to the
  221: *>          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
  222: *>          eigenvector converged satisfactorily. If the i-th and (i+1)th
  223: *>          columns of VR hold a complex eigenvector, then IFAILR(i) and
  224: *>          IFAILR(i+1) are set to the same value.
  225: *>          If SIDE = 'L', IFAILR is not referenced.
  226: *> \endverbatim
  227: *>
  228: *> \param[out] INFO
  229: *> \verbatim
  230: *>          INFO is INTEGER
  231: *>          = 0:  successful exit
  232: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  233: *>          > 0:  if INFO = i, i is the number of eigenvectors which
  234: *>                failed to converge; see IFAILL and IFAILR for further
  235: *>                details.
  236: *> \endverbatim
  237: *
  238: *  Authors:
  239: *  ========
  240: *
  241: *> \author Univ. of Tennessee 
  242: *> \author Univ. of California Berkeley 
  243: *> \author Univ. of Colorado Denver 
  244: *> \author NAG Ltd. 
  245: *
  246: *> \date November 2011
  247: *
  248: *> \ingroup doubleOTHERcomputational
  249: *
  250: *> \par Further Details:
  251: *  =====================
  252: *>
  253: *> \verbatim
  254: *>
  255: *>  Each eigenvector is normalized so that the element of largest
  256: *>  magnitude has magnitude 1; here the magnitude of a complex number
  257: *>  (x,y) is taken to be |x|+|y|.
  258: *> \endverbatim
  259: *>
  260: *  =====================================================================
  261:       SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
  262:      $                   VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
  263:      $                   IFAILR, INFO )
  264: *
  265: *  -- LAPACK computational routine (version 3.4.0) --
  266: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  267: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  268: *     November 2011
  269: *
  270: *     .. Scalar Arguments ..
  271:       CHARACTER          EIGSRC, INITV, SIDE
  272:       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
  273: *     ..
  274: *     .. Array Arguments ..
  275:       LOGICAL            SELECT( * )
  276:       INTEGER            IFAILL( * ), IFAILR( * )
  277:       DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
  278:      $                   WI( * ), WORK( * ), WR( * )
  279: *     ..
  280: *
  281: *  =====================================================================
  282: *
  283: *     .. Parameters ..
  284:       DOUBLE PRECISION   ZERO, ONE
  285:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  286: *     ..
  287: *     .. Local Scalars ..
  288:       LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, PAIR, RIGHTV
  289:       INTEGER            I, IINFO, K, KL, KLN, KR, KSI, KSR, LDWORK
  290:       DOUBLE PRECISION   BIGNUM, EPS3, HNORM, SMLNUM, ULP, UNFL, WKI,
  291:      $                   WKR
  292: *     ..
  293: *     .. External Functions ..
  294:       LOGICAL            LSAME
  295:       DOUBLE PRECISION   DLAMCH, DLANHS
  296:       EXTERNAL           LSAME, DLAMCH, DLANHS
  297: *     ..
  298: *     .. External Subroutines ..
  299:       EXTERNAL           DLAEIN, XERBLA
  300: *     ..
  301: *     .. Intrinsic Functions ..
  302:       INTRINSIC          ABS, MAX
  303: *     ..
  304: *     .. Executable Statements ..
  305: *
  306: *     Decode and test the input parameters.
  307: *
  308:       BOTHV = LSAME( SIDE, 'B' )
  309:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
  310:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
  311: *
  312:       FROMQR = LSAME( EIGSRC, 'Q' )
  313: *
  314:       NOINIT = LSAME( INITV, 'N' )
  315: *
  316: *     Set M to the number of columns required to store the selected
  317: *     eigenvectors, and standardize the array SELECT.
  318: *
  319:       M = 0
  320:       PAIR = .FALSE.
  321:       DO 10 K = 1, N
  322:          IF( PAIR ) THEN
  323:             PAIR = .FALSE.
  324:             SELECT( K ) = .FALSE.
  325:          ELSE
  326:             IF( WI( K ).EQ.ZERO ) THEN
  327:                IF( SELECT( K ) )
  328:      $            M = M + 1
  329:             ELSE
  330:                PAIR = .TRUE.
  331:                IF( SELECT( K ) .OR. SELECT( K+1 ) ) THEN
  332:                   SELECT( K ) = .TRUE.
  333:                   M = M + 2
  334:                END IF
  335:             END IF
  336:          END IF
  337:    10 CONTINUE
  338: *
  339:       INFO = 0
  340:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
  341:          INFO = -1
  342:       ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
  343:          INFO = -2
  344:       ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
  345:          INFO = -3
  346:       ELSE IF( N.LT.0 ) THEN
  347:          INFO = -5
  348:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
  349:          INFO = -7
  350:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
  351:          INFO = -11
  352:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
  353:          INFO = -13
  354:       ELSE IF( MM.LT.M ) THEN
  355:          INFO = -14
  356:       END IF
  357:       IF( INFO.NE.0 ) THEN
  358:          CALL XERBLA( 'DHSEIN', -INFO )
  359:          RETURN
  360:       END IF
  361: *
  362: *     Quick return if possible.
  363: *
  364:       IF( N.EQ.0 )
  365:      $   RETURN
  366: *
  367: *     Set machine-dependent constants.
  368: *
  369:       UNFL = DLAMCH( 'Safe minimum' )
  370:       ULP = DLAMCH( 'Precision' )
  371:       SMLNUM = UNFL*( N / ULP )
  372:       BIGNUM = ( ONE-ULP ) / SMLNUM
  373: *
  374:       LDWORK = N + 1
  375: *
  376:       KL = 1
  377:       KLN = 0
  378:       IF( FROMQR ) THEN
  379:          KR = 0
  380:       ELSE
  381:          KR = N
  382:       END IF
  383:       KSR = 1
  384: *
  385:       DO 120 K = 1, N
  386:          IF( SELECT( K ) ) THEN
  387: *
  388: *           Compute eigenvector(s) corresponding to W(K).
  389: *
  390:             IF( FROMQR ) THEN
  391: *
  392: *              If affiliation of eigenvalues is known, check whether
  393: *              the matrix splits.
  394: *
  395: *              Determine KL and KR such that 1 <= KL <= K <= KR <= N
  396: *              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
  397: *              KR = N).
  398: *
  399: *              Then inverse iteration can be performed with the
  400: *              submatrix H(KL:N,KL:N) for a left eigenvector, and with
  401: *              the submatrix H(1:KR,1:KR) for a right eigenvector.
  402: *
  403:                DO 20 I = K, KL + 1, -1
  404:                   IF( H( I, I-1 ).EQ.ZERO )
  405:      $               GO TO 30
  406:    20          CONTINUE
  407:    30          CONTINUE
  408:                KL = I
  409:                IF( K.GT.KR ) THEN
  410:                   DO 40 I = K, N - 1
  411:                      IF( H( I+1, I ).EQ.ZERO )
  412:      $                  GO TO 50
  413:    40             CONTINUE
  414:    50             CONTINUE
  415:                   KR = I
  416:                END IF
  417:             END IF
  418: *
  419:             IF( KL.NE.KLN ) THEN
  420:                KLN = KL
  421: *
  422: *              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
  423: *              has not ben computed before.
  424: *
  425:                HNORM = DLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, WORK )
  426:                IF( HNORM.GT.ZERO ) THEN
  427:                   EPS3 = HNORM*ULP
  428:                ELSE
  429:                   EPS3 = SMLNUM
  430:                END IF
  431:             END IF
  432: *
  433: *           Perturb eigenvalue if it is close to any previous
  434: *           selected eigenvalues affiliated to the submatrix
  435: *           H(KL:KR,KL:KR). Close roots are modified by EPS3.
  436: *
  437:             WKR = WR( K )
  438:             WKI = WI( K )
  439:    60       CONTINUE
  440:             DO 70 I = K - 1, KL, -1
  441:                IF( SELECT( I ) .AND. ABS( WR( I )-WKR )+
  442:      $             ABS( WI( I )-WKI ).LT.EPS3 ) THEN
  443:                   WKR = WKR + EPS3
  444:                   GO TO 60
  445:                END IF
  446:    70       CONTINUE
  447:             WR( K ) = WKR
  448: *
  449:             PAIR = WKI.NE.ZERO
  450:             IF( PAIR ) THEN
  451:                KSI = KSR + 1
  452:             ELSE
  453:                KSI = KSR
  454:             END IF
  455:             IF( LEFTV ) THEN
  456: *
  457: *              Compute left eigenvector.
  458: *
  459:                CALL DLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
  460:      $                      WKR, WKI, VL( KL, KSR ), VL( KL, KSI ),
  461:      $                      WORK, LDWORK, WORK( N*N+N+1 ), EPS3, SMLNUM,
  462:      $                      BIGNUM, IINFO )
  463:                IF( IINFO.GT.0 ) THEN
  464:                   IF( PAIR ) THEN
  465:                      INFO = INFO + 2
  466:                   ELSE
  467:                      INFO = INFO + 1
  468:                   END IF
  469:                   IFAILL( KSR ) = K
  470:                   IFAILL( KSI ) = K
  471:                ELSE
  472:                   IFAILL( KSR ) = 0
  473:                   IFAILL( KSI ) = 0
  474:                END IF
  475:                DO 80 I = 1, KL - 1
  476:                   VL( I, KSR ) = ZERO
  477:    80          CONTINUE
  478:                IF( PAIR ) THEN
  479:                   DO 90 I = 1, KL - 1
  480:                      VL( I, KSI ) = ZERO
  481:    90             CONTINUE
  482:                END IF
  483:             END IF
  484:             IF( RIGHTV ) THEN
  485: *
  486: *              Compute right eigenvector.
  487: *
  488:                CALL DLAEIN( .TRUE., NOINIT, KR, H, LDH, WKR, WKI,
  489:      $                      VR( 1, KSR ), VR( 1, KSI ), WORK, LDWORK,
  490:      $                      WORK( N*N+N+1 ), EPS3, SMLNUM, BIGNUM,
  491:      $                      IINFO )
  492:                IF( IINFO.GT.0 ) THEN
  493:                   IF( PAIR ) THEN
  494:                      INFO = INFO + 2
  495:                   ELSE
  496:                      INFO = INFO + 1
  497:                   END IF
  498:                   IFAILR( KSR ) = K
  499:                   IFAILR( KSI ) = K
  500:                ELSE
  501:                   IFAILR( KSR ) = 0
  502:                   IFAILR( KSI ) = 0
  503:                END IF
  504:                DO 100 I = KR + 1, N
  505:                   VR( I, KSR ) = ZERO
  506:   100          CONTINUE
  507:                IF( PAIR ) THEN
  508:                   DO 110 I = KR + 1, N
  509:                      VR( I, KSI ) = ZERO
  510:   110             CONTINUE
  511:                END IF
  512:             END IF
  513: *
  514:             IF( PAIR ) THEN
  515:                KSR = KSR + 2
  516:             ELSE
  517:                KSR = KSR + 1
  518:             END IF
  519:          END IF
  520:   120 CONTINUE
  521: *
  522:       RETURN
  523: *
  524: *     End of DHSEIN
  525: *
  526:       END

CVSweb interface <joel.bertrand@systella.fr>