Annotation of rpl/lapack/lapack/dhsein.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
                      2:      $                   VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
                      3:      $                   IFAILR, INFO )
                      4: *
                      5: *  -- LAPACK routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          EIGSRC, INITV, SIDE
                     12:       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       LOGICAL            SELECT( * )
                     16:       INTEGER            IFAILL( * ), IFAILR( * )
                     17:       DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
                     18:      $                   WI( * ), WORK( * ), WR( * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DHSEIN uses inverse iteration to find specified right and/or left
                     25: *  eigenvectors of a real upper Hessenberg matrix H.
                     26: *
                     27: *  The right eigenvector x and the left eigenvector y of the matrix H
                     28: *  corresponding to an eigenvalue w are defined by:
                     29: *
                     30: *               H * x = w * x,     y**h * H = w * y**h
                     31: *
                     32: *  where y**h denotes the conjugate transpose of the vector y.
                     33: *
                     34: *  Arguments
                     35: *  =========
                     36: *
                     37: *  SIDE    (input) CHARACTER*1
                     38: *          = 'R': compute right eigenvectors only;
                     39: *          = 'L': compute left eigenvectors only;
                     40: *          = 'B': compute both right and left eigenvectors.
                     41: *
                     42: *  EIGSRC  (input) CHARACTER*1
                     43: *          Specifies the source of eigenvalues supplied in (WR,WI):
                     44: *          = 'Q': the eigenvalues were found using DHSEQR; thus, if
                     45: *                 H has zero subdiagonal elements, and so is
                     46: *                 block-triangular, then the j-th eigenvalue can be
                     47: *                 assumed to be an eigenvalue of the block containing
                     48: *                 the j-th row/column.  This property allows DHSEIN to
                     49: *                 perform inverse iteration on just one diagonal block.
                     50: *          = 'N': no assumptions are made on the correspondence
                     51: *                 between eigenvalues and diagonal blocks.  In this
                     52: *                 case, DHSEIN must always perform inverse iteration
                     53: *                 using the whole matrix H.
                     54: *
                     55: *  INITV   (input) CHARACTER*1
                     56: *          = 'N': no initial vectors are supplied;
                     57: *          = 'U': user-supplied initial vectors are stored in the arrays
                     58: *                 VL and/or VR.
                     59: *
                     60: *  SELECT  (input/output) LOGICAL array, dimension (N)
                     61: *          Specifies the eigenvectors to be computed. To select the
                     62: *          real eigenvector corresponding to a real eigenvalue WR(j),
                     63: *          SELECT(j) must be set to .TRUE.. To select the complex
                     64: *          eigenvector corresponding to a complex eigenvalue
                     65: *          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
                     66: *          either SELECT(j) or SELECT(j+1) or both must be set to
                     67: *          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
                     68: *          .FALSE..
                     69: *
                     70: *  N       (input) INTEGER
                     71: *          The order of the matrix H.  N >= 0.
                     72: *
                     73: *  H       (input) DOUBLE PRECISION array, dimension (LDH,N)
                     74: *          The upper Hessenberg matrix H.
                     75: *
                     76: *  LDH     (input) INTEGER
                     77: *          The leading dimension of the array H.  LDH >= max(1,N).
                     78: *
                     79: *  WR      (input/output) DOUBLE PRECISION array, dimension (N)
                     80: *  WI      (input) DOUBLE PRECISION array, dimension (N)
                     81: *          On entry, the real and imaginary parts of the eigenvalues of
                     82: *          H; a complex conjugate pair of eigenvalues must be stored in
                     83: *          consecutive elements of WR and WI.
                     84: *          On exit, WR may have been altered since close eigenvalues
                     85: *          are perturbed slightly in searching for independent
                     86: *          eigenvectors.
                     87: *
                     88: *  VL      (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
                     89: *          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
                     90: *          contain starting vectors for the inverse iteration for the
                     91: *          left eigenvectors; the starting vector for each eigenvector
                     92: *          must be in the same column(s) in which the eigenvector will
                     93: *          be stored.
                     94: *          On exit, if SIDE = 'L' or 'B', the left eigenvectors
                     95: *          specified by SELECT will be stored consecutively in the
                     96: *          columns of VL, in the same order as their eigenvalues. A
                     97: *          complex eigenvector corresponding to a complex eigenvalue is
                     98: *          stored in two consecutive columns, the first holding the real
                     99: *          part and the second the imaginary part.
                    100: *          If SIDE = 'R', VL is not referenced.
                    101: *
                    102: *  LDVL    (input) INTEGER
                    103: *          The leading dimension of the array VL.
                    104: *          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
                    105: *
                    106: *  VR      (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
                    107: *          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
                    108: *          contain starting vectors for the inverse iteration for the
                    109: *          right eigenvectors; the starting vector for each eigenvector
                    110: *          must be in the same column(s) in which the eigenvector will
                    111: *          be stored.
                    112: *          On exit, if SIDE = 'R' or 'B', the right eigenvectors
                    113: *          specified by SELECT will be stored consecutively in the
                    114: *          columns of VR, in the same order as their eigenvalues. A
                    115: *          complex eigenvector corresponding to a complex eigenvalue is
                    116: *          stored in two consecutive columns, the first holding the real
                    117: *          part and the second the imaginary part.
                    118: *          If SIDE = 'L', VR is not referenced.
                    119: *
                    120: *  LDVR    (input) INTEGER
                    121: *          The leading dimension of the array VR.
                    122: *          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
                    123: *
                    124: *  MM      (input) INTEGER
                    125: *          The number of columns in the arrays VL and/or VR. MM >= M.
                    126: *
                    127: *  M       (output) INTEGER
                    128: *          The number of columns in the arrays VL and/or VR required to
                    129: *          store the eigenvectors; each selected real eigenvector
                    130: *          occupies one column and each selected complex eigenvector
                    131: *          occupies two columns.
                    132: *
                    133: *  WORK    (workspace) DOUBLE PRECISION array, dimension ((N+2)*N)
                    134: *
                    135: *  IFAILL  (output) INTEGER array, dimension (MM)
                    136: *          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
                    137: *          eigenvector in the i-th column of VL (corresponding to the
                    138: *          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
                    139: *          eigenvector converged satisfactorily. If the i-th and (i+1)th
                    140: *          columns of VL hold a complex eigenvector, then IFAILL(i) and
                    141: *          IFAILL(i+1) are set to the same value.
                    142: *          If SIDE = 'R', IFAILL is not referenced.
                    143: *
                    144: *  IFAILR  (output) INTEGER array, dimension (MM)
                    145: *          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
                    146: *          eigenvector in the i-th column of VR (corresponding to the
                    147: *          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
                    148: *          eigenvector converged satisfactorily. If the i-th and (i+1)th
                    149: *          columns of VR hold a complex eigenvector, then IFAILR(i) and
                    150: *          IFAILR(i+1) are set to the same value.
                    151: *          If SIDE = 'L', IFAILR is not referenced.
                    152: *
                    153: *  INFO    (output) INTEGER
                    154: *          = 0:  successful exit
                    155: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    156: *          > 0:  if INFO = i, i is the number of eigenvectors which
                    157: *                failed to converge; see IFAILL and IFAILR for further
                    158: *                details.
                    159: *
                    160: *  Further Details
                    161: *  ===============
                    162: *
                    163: *  Each eigenvector is normalized so that the element of largest
                    164: *  magnitude has magnitude 1; here the magnitude of a complex number
                    165: *  (x,y) is taken to be |x|+|y|.
                    166: *
                    167: *  =====================================================================
                    168: *
                    169: *     .. Parameters ..
                    170:       DOUBLE PRECISION   ZERO, ONE
                    171:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    172: *     ..
                    173: *     .. Local Scalars ..
                    174:       LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, PAIR, RIGHTV
                    175:       INTEGER            I, IINFO, K, KL, KLN, KR, KSI, KSR, LDWORK
                    176:       DOUBLE PRECISION   BIGNUM, EPS3, HNORM, SMLNUM, ULP, UNFL, WKI,
                    177:      $                   WKR
                    178: *     ..
                    179: *     .. External Functions ..
                    180:       LOGICAL            LSAME
                    181:       DOUBLE PRECISION   DLAMCH, DLANHS
                    182:       EXTERNAL           LSAME, DLAMCH, DLANHS
                    183: *     ..
                    184: *     .. External Subroutines ..
                    185:       EXTERNAL           DLAEIN, XERBLA
                    186: *     ..
                    187: *     .. Intrinsic Functions ..
                    188:       INTRINSIC          ABS, MAX
                    189: *     ..
                    190: *     .. Executable Statements ..
                    191: *
                    192: *     Decode and test the input parameters.
                    193: *
                    194:       BOTHV = LSAME( SIDE, 'B' )
                    195:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
                    196:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
                    197: *
                    198:       FROMQR = LSAME( EIGSRC, 'Q' )
                    199: *
                    200:       NOINIT = LSAME( INITV, 'N' )
                    201: *
                    202: *     Set M to the number of columns required to store the selected
                    203: *     eigenvectors, and standardize the array SELECT.
                    204: *
                    205:       M = 0
                    206:       PAIR = .FALSE.
                    207:       DO 10 K = 1, N
                    208:          IF( PAIR ) THEN
                    209:             PAIR = .FALSE.
                    210:             SELECT( K ) = .FALSE.
                    211:          ELSE
                    212:             IF( WI( K ).EQ.ZERO ) THEN
                    213:                IF( SELECT( K ) )
                    214:      $            M = M + 1
                    215:             ELSE
                    216:                PAIR = .TRUE.
                    217:                IF( SELECT( K ) .OR. SELECT( K+1 ) ) THEN
                    218:                   SELECT( K ) = .TRUE.
                    219:                   M = M + 2
                    220:                END IF
                    221:             END IF
                    222:          END IF
                    223:    10 CONTINUE
                    224: *
                    225:       INFO = 0
                    226:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    227:          INFO = -1
                    228:       ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
                    229:          INFO = -2
                    230:       ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
                    231:          INFO = -3
                    232:       ELSE IF( N.LT.0 ) THEN
                    233:          INFO = -5
                    234:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
                    235:          INFO = -7
                    236:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
                    237:          INFO = -11
                    238:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
                    239:          INFO = -13
                    240:       ELSE IF( MM.LT.M ) THEN
                    241:          INFO = -14
                    242:       END IF
                    243:       IF( INFO.NE.0 ) THEN
                    244:          CALL XERBLA( 'DHSEIN', -INFO )
                    245:          RETURN
                    246:       END IF
                    247: *
                    248: *     Quick return if possible.
                    249: *
                    250:       IF( N.EQ.0 )
                    251:      $   RETURN
                    252: *
                    253: *     Set machine-dependent constants.
                    254: *
                    255:       UNFL = DLAMCH( 'Safe minimum' )
                    256:       ULP = DLAMCH( 'Precision' )
                    257:       SMLNUM = UNFL*( N / ULP )
                    258:       BIGNUM = ( ONE-ULP ) / SMLNUM
                    259: *
                    260:       LDWORK = N + 1
                    261: *
                    262:       KL = 1
                    263:       KLN = 0
                    264:       IF( FROMQR ) THEN
                    265:          KR = 0
                    266:       ELSE
                    267:          KR = N
                    268:       END IF
                    269:       KSR = 1
                    270: *
                    271:       DO 120 K = 1, N
                    272:          IF( SELECT( K ) ) THEN
                    273: *
                    274: *           Compute eigenvector(s) corresponding to W(K).
                    275: *
                    276:             IF( FROMQR ) THEN
                    277: *
                    278: *              If affiliation of eigenvalues is known, check whether
                    279: *              the matrix splits.
                    280: *
                    281: *              Determine KL and KR such that 1 <= KL <= K <= KR <= N
                    282: *              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
                    283: *              KR = N).
                    284: *
                    285: *              Then inverse iteration can be performed with the
                    286: *              submatrix H(KL:N,KL:N) for a left eigenvector, and with
                    287: *              the submatrix H(1:KR,1:KR) for a right eigenvector.
                    288: *
                    289:                DO 20 I = K, KL + 1, -1
                    290:                   IF( H( I, I-1 ).EQ.ZERO )
                    291:      $               GO TO 30
                    292:    20          CONTINUE
                    293:    30          CONTINUE
                    294:                KL = I
                    295:                IF( K.GT.KR ) THEN
                    296:                   DO 40 I = K, N - 1
                    297:                      IF( H( I+1, I ).EQ.ZERO )
                    298:      $                  GO TO 50
                    299:    40             CONTINUE
                    300:    50             CONTINUE
                    301:                   KR = I
                    302:                END IF
                    303:             END IF
                    304: *
                    305:             IF( KL.NE.KLN ) THEN
                    306:                KLN = KL
                    307: *
                    308: *              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
                    309: *              has not ben computed before.
                    310: *
                    311:                HNORM = DLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, WORK )
                    312:                IF( HNORM.GT.ZERO ) THEN
                    313:                   EPS3 = HNORM*ULP
                    314:                ELSE
                    315:                   EPS3 = SMLNUM
                    316:                END IF
                    317:             END IF
                    318: *
                    319: *           Perturb eigenvalue if it is close to any previous
                    320: *           selected eigenvalues affiliated to the submatrix
                    321: *           H(KL:KR,KL:KR). Close roots are modified by EPS3.
                    322: *
                    323:             WKR = WR( K )
                    324:             WKI = WI( K )
                    325:    60       CONTINUE
                    326:             DO 70 I = K - 1, KL, -1
                    327:                IF( SELECT( I ) .AND. ABS( WR( I )-WKR )+
                    328:      $             ABS( WI( I )-WKI ).LT.EPS3 ) THEN
                    329:                   WKR = WKR + EPS3
                    330:                   GO TO 60
                    331:                END IF
                    332:    70       CONTINUE
                    333:             WR( K ) = WKR
                    334: *
                    335:             PAIR = WKI.NE.ZERO
                    336:             IF( PAIR ) THEN
                    337:                KSI = KSR + 1
                    338:             ELSE
                    339:                KSI = KSR
                    340:             END IF
                    341:             IF( LEFTV ) THEN
                    342: *
                    343: *              Compute left eigenvector.
                    344: *
                    345:                CALL DLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
                    346:      $                      WKR, WKI, VL( KL, KSR ), VL( KL, KSI ),
                    347:      $                      WORK, LDWORK, WORK( N*N+N+1 ), EPS3, SMLNUM,
                    348:      $                      BIGNUM, IINFO )
                    349:                IF( IINFO.GT.0 ) THEN
                    350:                   IF( PAIR ) THEN
                    351:                      INFO = INFO + 2
                    352:                   ELSE
                    353:                      INFO = INFO + 1
                    354:                   END IF
                    355:                   IFAILL( KSR ) = K
                    356:                   IFAILL( KSI ) = K
                    357:                ELSE
                    358:                   IFAILL( KSR ) = 0
                    359:                   IFAILL( KSI ) = 0
                    360:                END IF
                    361:                DO 80 I = 1, KL - 1
                    362:                   VL( I, KSR ) = ZERO
                    363:    80          CONTINUE
                    364:                IF( PAIR ) THEN
                    365:                   DO 90 I = 1, KL - 1
                    366:                      VL( I, KSI ) = ZERO
                    367:    90             CONTINUE
                    368:                END IF
                    369:             END IF
                    370:             IF( RIGHTV ) THEN
                    371: *
                    372: *              Compute right eigenvector.
                    373: *
                    374:                CALL DLAEIN( .TRUE., NOINIT, KR, H, LDH, WKR, WKI,
                    375:      $                      VR( 1, KSR ), VR( 1, KSI ), WORK, LDWORK,
                    376:      $                      WORK( N*N+N+1 ), EPS3, SMLNUM, BIGNUM,
                    377:      $                      IINFO )
                    378:                IF( IINFO.GT.0 ) THEN
                    379:                   IF( PAIR ) THEN
                    380:                      INFO = INFO + 2
                    381:                   ELSE
                    382:                      INFO = INFO + 1
                    383:                   END IF
                    384:                   IFAILR( KSR ) = K
                    385:                   IFAILR( KSI ) = K
                    386:                ELSE
                    387:                   IFAILR( KSR ) = 0
                    388:                   IFAILR( KSI ) = 0
                    389:                END IF
                    390:                DO 100 I = KR + 1, N
                    391:                   VR( I, KSR ) = ZERO
                    392:   100          CONTINUE
                    393:                IF( PAIR ) THEN
                    394:                   DO 110 I = KR + 1, N
                    395:                      VR( I, KSI ) = ZERO
                    396:   110             CONTINUE
                    397:                END IF
                    398:             END IF
                    399: *
                    400:             IF( PAIR ) THEN
                    401:                KSR = KSR + 2
                    402:             ELSE
                    403:                KSR = KSR + 1
                    404:             END IF
                    405:          END IF
                    406:   120 CONTINUE
                    407: *
                    408:       RETURN
                    409: *
                    410: *     End of DHSEIN
                    411: *
                    412:       END

CVSweb interface <joel.bertrand@systella.fr>