Annotation of rpl/lapack/lapack/dhsein.f, revision 1.18

1.8       bertrand    1: *> \brief \b DHSEIN
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DHSEIN + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhsein.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhsein.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhsein.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
                     22: *                          VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
                     23: *                          IFAILR, INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          EIGSRC, INITV, SIDE
                     27: *       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       LOGICAL            SELECT( * )
                     31: *       INTEGER            IFAILL( * ), IFAILR( * )
                     32: *       DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
                     33: *      $                   WI( * ), WORK( * ), WR( * )
                     34: *       ..
1.15      bertrand   35: *
1.8       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> DHSEIN uses inverse iteration to find specified right and/or left
                     43: *> eigenvectors of a real upper Hessenberg matrix H.
                     44: *>
                     45: *> The right eigenvector x and the left eigenvector y of the matrix H
                     46: *> corresponding to an eigenvalue w are defined by:
                     47: *>
                     48: *>              H * x = w * x,     y**h * H = w * y**h
                     49: *>
                     50: *> where y**h denotes the conjugate transpose of the vector y.
                     51: *> \endverbatim
                     52: *
                     53: *  Arguments:
                     54: *  ==========
                     55: *
                     56: *> \param[in] SIDE
                     57: *> \verbatim
                     58: *>          SIDE is CHARACTER*1
                     59: *>          = 'R': compute right eigenvectors only;
                     60: *>          = 'L': compute left eigenvectors only;
                     61: *>          = 'B': compute both right and left eigenvectors.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in] EIGSRC
                     65: *> \verbatim
                     66: *>          EIGSRC is CHARACTER*1
                     67: *>          Specifies the source of eigenvalues supplied in (WR,WI):
                     68: *>          = 'Q': the eigenvalues were found using DHSEQR; thus, if
                     69: *>                 H has zero subdiagonal elements, and so is
                     70: *>                 block-triangular, then the j-th eigenvalue can be
                     71: *>                 assumed to be an eigenvalue of the block containing
                     72: *>                 the j-th row/column.  This property allows DHSEIN to
                     73: *>                 perform inverse iteration on just one diagonal block.
                     74: *>          = 'N': no assumptions are made on the correspondence
                     75: *>                 between eigenvalues and diagonal blocks.  In this
                     76: *>                 case, DHSEIN must always perform inverse iteration
                     77: *>                 using the whole matrix H.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] INITV
                     81: *> \verbatim
                     82: *>          INITV is CHARACTER*1
                     83: *>          = 'N': no initial vectors are supplied;
                     84: *>          = 'U': user-supplied initial vectors are stored in the arrays
                     85: *>                 VL and/or VR.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] SELECT
                     89: *> \verbatim
                     90: *>          SELECT is LOGICAL array, dimension (N)
                     91: *>          Specifies the eigenvectors to be computed. To select the
                     92: *>          real eigenvector corresponding to a real eigenvalue WR(j),
                     93: *>          SELECT(j) must be set to .TRUE.. To select the complex
                     94: *>          eigenvector corresponding to a complex eigenvalue
                     95: *>          (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)),
                     96: *>          either SELECT(j) or SELECT(j+1) or both must be set to
                     97: *>          .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is
                     98: *>          .FALSE..
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] N
                    102: *> \verbatim
                    103: *>          N is INTEGER
                    104: *>          The order of the matrix H.  N >= 0.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] H
                    108: *> \verbatim
                    109: *>          H is DOUBLE PRECISION array, dimension (LDH,N)
                    110: *>          The upper Hessenberg matrix H.
1.12      bertrand  111: *>          If a NaN is detected in H, the routine will return with INFO=-6.
1.8       bertrand  112: *> \endverbatim
                    113: *>
                    114: *> \param[in] LDH
                    115: *> \verbatim
                    116: *>          LDH is INTEGER
                    117: *>          The leading dimension of the array H.  LDH >= max(1,N).
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in,out] WR
                    121: *> \verbatim
                    122: *>          WR is DOUBLE PRECISION array, dimension (N)
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] WI
                    126: *> \verbatim
                    127: *>          WI is DOUBLE PRECISION array, dimension (N)
                    128: *>
                    129: *>          On entry, the real and imaginary parts of the eigenvalues of
                    130: *>          H; a complex conjugate pair of eigenvalues must be stored in
                    131: *>          consecutive elements of WR and WI.
                    132: *>          On exit, WR may have been altered since close eigenvalues
                    133: *>          are perturbed slightly in searching for independent
                    134: *>          eigenvectors.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in,out] VL
                    138: *> \verbatim
                    139: *>          VL is DOUBLE PRECISION array, dimension (LDVL,MM)
                    140: *>          On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
                    141: *>          contain starting vectors for the inverse iteration for the
                    142: *>          left eigenvectors; the starting vector for each eigenvector
                    143: *>          must be in the same column(s) in which the eigenvector will
                    144: *>          be stored.
                    145: *>          On exit, if SIDE = 'L' or 'B', the left eigenvectors
                    146: *>          specified by SELECT will be stored consecutively in the
                    147: *>          columns of VL, in the same order as their eigenvalues. A
                    148: *>          complex eigenvector corresponding to a complex eigenvalue is
                    149: *>          stored in two consecutive columns, the first holding the real
                    150: *>          part and the second the imaginary part.
                    151: *>          If SIDE = 'R', VL is not referenced.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[in] LDVL
                    155: *> \verbatim
                    156: *>          LDVL is INTEGER
                    157: *>          The leading dimension of the array VL.
                    158: *>          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in,out] VR
                    162: *> \verbatim
                    163: *>          VR is DOUBLE PRECISION array, dimension (LDVR,MM)
                    164: *>          On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
                    165: *>          contain starting vectors for the inverse iteration for the
                    166: *>          right eigenvectors; the starting vector for each eigenvector
                    167: *>          must be in the same column(s) in which the eigenvector will
                    168: *>          be stored.
                    169: *>          On exit, if SIDE = 'R' or 'B', the right eigenvectors
                    170: *>          specified by SELECT will be stored consecutively in the
                    171: *>          columns of VR, in the same order as their eigenvalues. A
                    172: *>          complex eigenvector corresponding to a complex eigenvalue is
                    173: *>          stored in two consecutive columns, the first holding the real
                    174: *>          part and the second the imaginary part.
                    175: *>          If SIDE = 'L', VR is not referenced.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] LDVR
                    179: *> \verbatim
                    180: *>          LDVR is INTEGER
                    181: *>          The leading dimension of the array VR.
                    182: *>          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[in] MM
                    186: *> \verbatim
                    187: *>          MM is INTEGER
                    188: *>          The number of columns in the arrays VL and/or VR. MM >= M.
                    189: *> \endverbatim
                    190: *>
                    191: *> \param[out] M
                    192: *> \verbatim
                    193: *>          M is INTEGER
                    194: *>          The number of columns in the arrays VL and/or VR required to
                    195: *>          store the eigenvectors; each selected real eigenvector
                    196: *>          occupies one column and each selected complex eigenvector
                    197: *>          occupies two columns.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[out] WORK
                    201: *> \verbatim
                    202: *>          WORK is DOUBLE PRECISION array, dimension ((N+2)*N)
                    203: *> \endverbatim
                    204: *>
                    205: *> \param[out] IFAILL
                    206: *> \verbatim
                    207: *>          IFAILL is INTEGER array, dimension (MM)
                    208: *>          If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
                    209: *>          eigenvector in the i-th column of VL (corresponding to the
                    210: *>          eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
                    211: *>          eigenvector converged satisfactorily. If the i-th and (i+1)th
                    212: *>          columns of VL hold a complex eigenvector, then IFAILL(i) and
                    213: *>          IFAILL(i+1) are set to the same value.
                    214: *>          If SIDE = 'R', IFAILL is not referenced.
                    215: *> \endverbatim
                    216: *>
                    217: *> \param[out] IFAILR
                    218: *> \verbatim
                    219: *>          IFAILR is INTEGER array, dimension (MM)
                    220: *>          If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
                    221: *>          eigenvector in the i-th column of VR (corresponding to the
                    222: *>          eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
                    223: *>          eigenvector converged satisfactorily. If the i-th and (i+1)th
                    224: *>          columns of VR hold a complex eigenvector, then IFAILR(i) and
                    225: *>          IFAILR(i+1) are set to the same value.
                    226: *>          If SIDE = 'L', IFAILR is not referenced.
                    227: *> \endverbatim
                    228: *>
                    229: *> \param[out] INFO
                    230: *> \verbatim
                    231: *>          INFO is INTEGER
                    232: *>          = 0:  successful exit
                    233: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    234: *>          > 0:  if INFO = i, i is the number of eigenvectors which
                    235: *>                failed to converge; see IFAILL and IFAILR for further
                    236: *>                details.
                    237: *> \endverbatim
                    238: *
                    239: *  Authors:
                    240: *  ========
                    241: *
1.15      bertrand  242: *> \author Univ. of Tennessee
                    243: *> \author Univ. of California Berkeley
                    244: *> \author Univ. of Colorado Denver
                    245: *> \author NAG Ltd.
1.8       bertrand  246: *
                    247: *> \ingroup doubleOTHERcomputational
                    248: *
                    249: *> \par Further Details:
                    250: *  =====================
                    251: *>
                    252: *> \verbatim
                    253: *>
                    254: *>  Each eigenvector is normalized so that the element of largest
                    255: *>  magnitude has magnitude 1; here the magnitude of a complex number
                    256: *>  (x,y) is taken to be |x|+|y|.
                    257: *> \endverbatim
                    258: *>
                    259: *  =====================================================================
1.1       bertrand  260:       SUBROUTINE DHSEIN( SIDE, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI,
                    261:      $                   VL, LDVL, VR, LDVR, MM, M, WORK, IFAILL,
                    262:      $                   IFAILR, INFO )
                    263: *
1.18    ! bertrand  264: *  -- LAPACK computational routine --
1.1       bertrand  265: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    266: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    267: *
                    268: *     .. Scalar Arguments ..
                    269:       CHARACTER          EIGSRC, INITV, SIDE
                    270:       INTEGER            INFO, LDH, LDVL, LDVR, M, MM, N
                    271: *     ..
                    272: *     .. Array Arguments ..
                    273:       LOGICAL            SELECT( * )
                    274:       INTEGER            IFAILL( * ), IFAILR( * )
                    275:       DOUBLE PRECISION   H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
                    276:      $                   WI( * ), WORK( * ), WR( * )
                    277: *     ..
                    278: *
                    279: *  =====================================================================
                    280: *
                    281: *     .. Parameters ..
                    282:       DOUBLE PRECISION   ZERO, ONE
                    283:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    284: *     ..
                    285: *     .. Local Scalars ..
                    286:       LOGICAL            BOTHV, FROMQR, LEFTV, NOINIT, PAIR, RIGHTV
                    287:       INTEGER            I, IINFO, K, KL, KLN, KR, KSI, KSR, LDWORK
                    288:       DOUBLE PRECISION   BIGNUM, EPS3, HNORM, SMLNUM, ULP, UNFL, WKI,
                    289:      $                   WKR
                    290: *     ..
                    291: *     .. External Functions ..
1.12      bertrand  292:       LOGICAL            LSAME, DISNAN
1.1       bertrand  293:       DOUBLE PRECISION   DLAMCH, DLANHS
1.12      bertrand  294:       EXTERNAL           LSAME, DLAMCH, DLANHS, DISNAN
1.1       bertrand  295: *     ..
                    296: *     .. External Subroutines ..
                    297:       EXTERNAL           DLAEIN, XERBLA
                    298: *     ..
                    299: *     .. Intrinsic Functions ..
                    300:       INTRINSIC          ABS, MAX
                    301: *     ..
                    302: *     .. Executable Statements ..
                    303: *
                    304: *     Decode and test the input parameters.
                    305: *
                    306:       BOTHV = LSAME( SIDE, 'B' )
                    307:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
                    308:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
                    309: *
                    310:       FROMQR = LSAME( EIGSRC, 'Q' )
                    311: *
                    312:       NOINIT = LSAME( INITV, 'N' )
                    313: *
                    314: *     Set M to the number of columns required to store the selected
                    315: *     eigenvectors, and standardize the array SELECT.
                    316: *
                    317:       M = 0
                    318:       PAIR = .FALSE.
                    319:       DO 10 K = 1, N
                    320:          IF( PAIR ) THEN
                    321:             PAIR = .FALSE.
                    322:             SELECT( K ) = .FALSE.
                    323:          ELSE
                    324:             IF( WI( K ).EQ.ZERO ) THEN
                    325:                IF( SELECT( K ) )
                    326:      $            M = M + 1
                    327:             ELSE
                    328:                PAIR = .TRUE.
                    329:                IF( SELECT( K ) .OR. SELECT( K+1 ) ) THEN
                    330:                   SELECT( K ) = .TRUE.
                    331:                   M = M + 2
                    332:                END IF
                    333:             END IF
                    334:          END IF
                    335:    10 CONTINUE
                    336: *
                    337:       INFO = 0
                    338:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    339:          INFO = -1
                    340:       ELSE IF( .NOT.FROMQR .AND. .NOT.LSAME( EIGSRC, 'N' ) ) THEN
                    341:          INFO = -2
                    342:       ELSE IF( .NOT.NOINIT .AND. .NOT.LSAME( INITV, 'U' ) ) THEN
                    343:          INFO = -3
                    344:       ELSE IF( N.LT.0 ) THEN
                    345:          INFO = -5
                    346:       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
                    347:          INFO = -7
                    348:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
                    349:          INFO = -11
                    350:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
                    351:          INFO = -13
                    352:       ELSE IF( MM.LT.M ) THEN
                    353:          INFO = -14
                    354:       END IF
                    355:       IF( INFO.NE.0 ) THEN
                    356:          CALL XERBLA( 'DHSEIN', -INFO )
                    357:          RETURN
                    358:       END IF
                    359: *
                    360: *     Quick return if possible.
                    361: *
                    362:       IF( N.EQ.0 )
                    363:      $   RETURN
                    364: *
                    365: *     Set machine-dependent constants.
                    366: *
                    367:       UNFL = DLAMCH( 'Safe minimum' )
                    368:       ULP = DLAMCH( 'Precision' )
                    369:       SMLNUM = UNFL*( N / ULP )
                    370:       BIGNUM = ( ONE-ULP ) / SMLNUM
                    371: *
                    372:       LDWORK = N + 1
                    373: *
                    374:       KL = 1
                    375:       KLN = 0
                    376:       IF( FROMQR ) THEN
                    377:          KR = 0
                    378:       ELSE
                    379:          KR = N
                    380:       END IF
                    381:       KSR = 1
                    382: *
                    383:       DO 120 K = 1, N
                    384:          IF( SELECT( K ) ) THEN
                    385: *
                    386: *           Compute eigenvector(s) corresponding to W(K).
                    387: *
                    388:             IF( FROMQR ) THEN
                    389: *
                    390: *              If affiliation of eigenvalues is known, check whether
                    391: *              the matrix splits.
                    392: *
                    393: *              Determine KL and KR such that 1 <= KL <= K <= KR <= N
                    394: *              and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or
                    395: *              KR = N).
                    396: *
                    397: *              Then inverse iteration can be performed with the
                    398: *              submatrix H(KL:N,KL:N) for a left eigenvector, and with
                    399: *              the submatrix H(1:KR,1:KR) for a right eigenvector.
                    400: *
                    401:                DO 20 I = K, KL + 1, -1
                    402:                   IF( H( I, I-1 ).EQ.ZERO )
                    403:      $               GO TO 30
                    404:    20          CONTINUE
                    405:    30          CONTINUE
                    406:                KL = I
                    407:                IF( K.GT.KR ) THEN
                    408:                   DO 40 I = K, N - 1
                    409:                      IF( H( I+1, I ).EQ.ZERO )
                    410:      $                  GO TO 50
                    411:    40             CONTINUE
                    412:    50             CONTINUE
                    413:                   KR = I
                    414:                END IF
                    415:             END IF
                    416: *
                    417:             IF( KL.NE.KLN ) THEN
                    418:                KLN = KL
                    419: *
                    420: *              Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it
                    421: *              has not ben computed before.
                    422: *
                    423:                HNORM = DLANHS( 'I', KR-KL+1, H( KL, KL ), LDH, WORK )
1.12      bertrand  424:                IF( DISNAN( HNORM ) ) THEN
                    425:                   INFO = -6
                    426:                   RETURN
                    427:                ELSE IF( HNORM.GT.ZERO ) THEN
1.1       bertrand  428:                   EPS3 = HNORM*ULP
                    429:                ELSE
                    430:                   EPS3 = SMLNUM
                    431:                END IF
                    432:             END IF
                    433: *
                    434: *           Perturb eigenvalue if it is close to any previous
                    435: *           selected eigenvalues affiliated to the submatrix
                    436: *           H(KL:KR,KL:KR). Close roots are modified by EPS3.
                    437: *
                    438:             WKR = WR( K )
                    439:             WKI = WI( K )
                    440:    60       CONTINUE
                    441:             DO 70 I = K - 1, KL, -1
                    442:                IF( SELECT( I ) .AND. ABS( WR( I )-WKR )+
                    443:      $             ABS( WI( I )-WKI ).LT.EPS3 ) THEN
                    444:                   WKR = WKR + EPS3
                    445:                   GO TO 60
                    446:                END IF
                    447:    70       CONTINUE
                    448:             WR( K ) = WKR
                    449: *
                    450:             PAIR = WKI.NE.ZERO
                    451:             IF( PAIR ) THEN
                    452:                KSI = KSR + 1
                    453:             ELSE
                    454:                KSI = KSR
                    455:             END IF
                    456:             IF( LEFTV ) THEN
                    457: *
                    458: *              Compute left eigenvector.
                    459: *
                    460:                CALL DLAEIN( .FALSE., NOINIT, N-KL+1, H( KL, KL ), LDH,
                    461:      $                      WKR, WKI, VL( KL, KSR ), VL( KL, KSI ),
                    462:      $                      WORK, LDWORK, WORK( N*N+N+1 ), EPS3, SMLNUM,
                    463:      $                      BIGNUM, IINFO )
                    464:                IF( IINFO.GT.0 ) THEN
                    465:                   IF( PAIR ) THEN
                    466:                      INFO = INFO + 2
                    467:                   ELSE
                    468:                      INFO = INFO + 1
                    469:                   END IF
                    470:                   IFAILL( KSR ) = K
                    471:                   IFAILL( KSI ) = K
                    472:                ELSE
                    473:                   IFAILL( KSR ) = 0
                    474:                   IFAILL( KSI ) = 0
                    475:                END IF
                    476:                DO 80 I = 1, KL - 1
                    477:                   VL( I, KSR ) = ZERO
                    478:    80          CONTINUE
                    479:                IF( PAIR ) THEN
                    480:                   DO 90 I = 1, KL - 1
                    481:                      VL( I, KSI ) = ZERO
                    482:    90             CONTINUE
                    483:                END IF
                    484:             END IF
                    485:             IF( RIGHTV ) THEN
                    486: *
                    487: *              Compute right eigenvector.
                    488: *
                    489:                CALL DLAEIN( .TRUE., NOINIT, KR, H, LDH, WKR, WKI,
                    490:      $                      VR( 1, KSR ), VR( 1, KSI ), WORK, LDWORK,
                    491:      $                      WORK( N*N+N+1 ), EPS3, SMLNUM, BIGNUM,
                    492:      $                      IINFO )
                    493:                IF( IINFO.GT.0 ) THEN
                    494:                   IF( PAIR ) THEN
                    495:                      INFO = INFO + 2
                    496:                   ELSE
                    497:                      INFO = INFO + 1
                    498:                   END IF
                    499:                   IFAILR( KSR ) = K
                    500:                   IFAILR( KSI ) = K
                    501:                ELSE
                    502:                   IFAILR( KSR ) = 0
                    503:                   IFAILR( KSI ) = 0
                    504:                END IF
                    505:                DO 100 I = KR + 1, N
                    506:                   VR( I, KSR ) = ZERO
                    507:   100          CONTINUE
                    508:                IF( PAIR ) THEN
                    509:                   DO 110 I = KR + 1, N
                    510:                      VR( I, KSI ) = ZERO
                    511:   110             CONTINUE
                    512:                END IF
                    513:             END IF
                    514: *
                    515:             IF( PAIR ) THEN
                    516:                KSR = KSR + 2
                    517:             ELSE
                    518:                KSR = KSR + 1
                    519:             END IF
                    520:          END IF
                    521:   120 CONTINUE
                    522: *
                    523:       RETURN
                    524: *
                    525: *     End of DHSEIN
                    526: *
                    527:       END

CVSweb interface <joel.bertrand@systella.fr>