File:  [local] / rpl / lapack / lapack / dgtts2.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:52 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGTTS2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtts2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtts2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtts2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            ITRANS, LDB, N, NRHS
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       INTEGER            IPIV( * )
   28: *       DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DGTTS2 solves one of the systems of equations
   38: *>    A*X = B  or  A**T*X = B,
   39: *> with a tridiagonal matrix A using the LU factorization computed
   40: *> by DGTTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] ITRANS
   47: *> \verbatim
   48: *>          ITRANS is INTEGER
   49: *>          Specifies the form of the system of equations.
   50: *>          = 0:  A * X = B  (No transpose)
   51: *>          = 1:  A**T* X = B  (Transpose)
   52: *>          = 2:  A**T* X = B  (Conjugate transpose = Transpose)
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] DL
   69: *> \verbatim
   70: *>          DL is DOUBLE PRECISION array, dimension (N-1)
   71: *>          The (n-1) multipliers that define the matrix L from the
   72: *>          LU factorization of A.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] D
   76: *> \verbatim
   77: *>          D is DOUBLE PRECISION array, dimension (N)
   78: *>          The n diagonal elements of the upper triangular matrix U from
   79: *>          the LU factorization of A.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] DU
   83: *> \verbatim
   84: *>          DU is DOUBLE PRECISION array, dimension (N-1)
   85: *>          The (n-1) elements of the first super-diagonal of U.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] DU2
   89: *> \verbatim
   90: *>          DU2 is DOUBLE PRECISION array, dimension (N-2)
   91: *>          The (n-2) elements of the second super-diagonal of U.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] IPIV
   95: *> \verbatim
   96: *>          IPIV is INTEGER array, dimension (N)
   97: *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
   98: *>          interchanged with row IPIV(i).  IPIV(i) will always be either
   99: *>          i or i+1; IPIV(i) = i indicates a row interchange was not
  100: *>          required.
  101: *> \endverbatim
  102: *>
  103: *> \param[in,out] B
  104: *> \verbatim
  105: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  106: *>          On entry, the matrix of right hand side vectors B.
  107: *>          On exit, B is overwritten by the solution vectors X.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] LDB
  111: *> \verbatim
  112: *>          LDB is INTEGER
  113: *>          The leading dimension of the array B.  LDB >= max(1,N).
  114: *> \endverbatim
  115: *
  116: *  Authors:
  117: *  ========
  118: *
  119: *> \author Univ. of Tennessee
  120: *> \author Univ. of California Berkeley
  121: *> \author Univ. of Colorado Denver
  122: *> \author NAG Ltd.
  123: *
  124: *> \ingroup doubleGTcomputational
  125: *
  126: *  =====================================================================
  127:       SUBROUTINE DGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
  128: *
  129: *  -- LAPACK computational routine --
  130: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  131: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132: *
  133: *     .. Scalar Arguments ..
  134:       INTEGER            ITRANS, LDB, N, NRHS
  135: *     ..
  136: *     .. Array Arguments ..
  137:       INTEGER            IPIV( * )
  138:       DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
  139: *     ..
  140: *
  141: *  =====================================================================
  142: *
  143: *     .. Local Scalars ..
  144:       INTEGER            I, IP, J
  145:       DOUBLE PRECISION   TEMP
  146: *     ..
  147: *     .. Executable Statements ..
  148: *
  149: *     Quick return if possible
  150: *
  151:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  152:      $   RETURN
  153: *
  154:       IF( ITRANS.EQ.0 ) THEN
  155: *
  156: *        Solve A*X = B using the LU factorization of A,
  157: *        overwriting each right hand side vector with its solution.
  158: *
  159:          IF( NRHS.LE.1 ) THEN
  160:             J = 1
  161:    10       CONTINUE
  162: *
  163: *           Solve L*x = b.
  164: *
  165:             DO 20 I = 1, N - 1
  166:                IP = IPIV( I )
  167:                TEMP = B( I+1-IP+I, J ) - DL( I )*B( IP, J )
  168:                B( I, J ) = B( IP, J )
  169:                B( I+1, J ) = TEMP
  170:    20       CONTINUE
  171: *
  172: *           Solve U*x = b.
  173: *
  174:             B( N, J ) = B( N, J ) / D( N )
  175:             IF( N.GT.1 )
  176:      $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  177:      $                       D( N-1 )
  178:             DO 30 I = N - 2, 1, -1
  179:                B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
  180:      $                     B( I+2, J ) ) / D( I )
  181:    30       CONTINUE
  182:             IF( J.LT.NRHS ) THEN
  183:                J = J + 1
  184:                GO TO 10
  185:             END IF
  186:          ELSE
  187:             DO 60 J = 1, NRHS
  188: *
  189: *              Solve L*x = b.
  190: *
  191:                DO 40 I = 1, N - 1
  192:                   IF( IPIV( I ).EQ.I ) THEN
  193:                      B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
  194:                   ELSE
  195:                      TEMP = B( I, J )
  196:                      B( I, J ) = B( I+1, J )
  197:                      B( I+1, J ) = TEMP - DL( I )*B( I, J )
  198:                   END IF
  199:    40          CONTINUE
  200: *
  201: *              Solve U*x = b.
  202: *
  203:                B( N, J ) = B( N, J ) / D( N )
  204:                IF( N.GT.1 )
  205:      $            B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  206:      $                          D( N-1 )
  207:                DO 50 I = N - 2, 1, -1
  208:                   B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
  209:      $                        B( I+2, J ) ) / D( I )
  210:    50          CONTINUE
  211:    60       CONTINUE
  212:          END IF
  213:       ELSE
  214: *
  215: *        Solve A**T * X = B.
  216: *
  217:          IF( NRHS.LE.1 ) THEN
  218: *
  219: *           Solve U**T*x = b.
  220: *
  221:             J = 1
  222:    70       CONTINUE
  223:             B( 1, J ) = B( 1, J ) / D( 1 )
  224:             IF( N.GT.1 )
  225:      $         B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
  226:             DO 80 I = 3, N
  227:                B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
  228:      $                     B( I-2, J ) ) / D( I )
  229:    80       CONTINUE
  230: *
  231: *           Solve L**T*x = b.
  232: *
  233:             DO 90 I = N - 1, 1, -1
  234:                IP = IPIV( I )
  235:                TEMP = B( I, J ) - DL( I )*B( I+1, J )
  236:                B( I, J ) = B( IP, J )
  237:                B( IP, J ) = TEMP
  238:    90       CONTINUE
  239:             IF( J.LT.NRHS ) THEN
  240:                J = J + 1
  241:                GO TO 70
  242:             END IF
  243: *
  244:          ELSE
  245:             DO 120 J = 1, NRHS
  246: *
  247: *              Solve U**T*x = b.
  248: *
  249:                B( 1, J ) = B( 1, J ) / D( 1 )
  250:                IF( N.GT.1 )
  251:      $            B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
  252:                DO 100 I = 3, N
  253:                   B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
  254:      $                        DU2( I-2 )*B( I-2, J ) ) / D( I )
  255:   100          CONTINUE
  256:                DO 110 I = N - 1, 1, -1
  257:                   IF( IPIV( I ).EQ.I ) THEN
  258:                      B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
  259:                   ELSE
  260:                      TEMP = B( I+1, J )
  261:                      B( I+1, J ) = B( I, J ) - DL( I )*TEMP
  262:                      B( I, J ) = TEMP
  263:                   END IF
  264:   110          CONTINUE
  265:   120       CONTINUE
  266:          END IF
  267:       END IF
  268: *
  269: *     End of DGTTS2
  270: *
  271:       END

CVSweb interface <joel.bertrand@systella.fr>