File:  [local] / rpl / lapack / lapack / dgtts2.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:29 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b DGTTS2
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGTTS2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtts2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtts2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtts2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            ITRANS, LDB, N, NRHS
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       INTEGER            IPIV( * )
   28: *       DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DGTTS2 solves one of the systems of equations
   38: *>    A*X = B  or  A**T*X = B,
   39: *> with a tridiagonal matrix A using the LU factorization computed
   40: *> by DGTTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] ITRANS
   47: *> \verbatim
   48: *>          ITRANS is INTEGER
   49: *>          Specifies the form of the system of equations.
   50: *>          = 0:  A * X = B  (No transpose)
   51: *>          = 1:  A**T* X = B  (Transpose)
   52: *>          = 2:  A**T* X = B  (Conjugate transpose = Transpose)
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] DL
   69: *> \verbatim
   70: *>          DL is DOUBLE PRECISION array, dimension (N-1)
   71: *>          The (n-1) multipliers that define the matrix L from the
   72: *>          LU factorization of A.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] D
   76: *> \verbatim
   77: *>          D is DOUBLE PRECISION array, dimension (N)
   78: *>          The n diagonal elements of the upper triangular matrix U from
   79: *>          the LU factorization of A.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] DU
   83: *> \verbatim
   84: *>          DU is DOUBLE PRECISION array, dimension (N-1)
   85: *>          The (n-1) elements of the first super-diagonal of U.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] DU2
   89: *> \verbatim
   90: *>          DU2 is DOUBLE PRECISION array, dimension (N-2)
   91: *>          The (n-2) elements of the second super-diagonal of U.
   92: *> \endverbatim
   93: *>
   94: *> \param[in] IPIV
   95: *> \verbatim
   96: *>          IPIV is INTEGER array, dimension (N)
   97: *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
   98: *>          interchanged with row IPIV(i).  IPIV(i) will always be either
   99: *>          i or i+1; IPIV(i) = i indicates a row interchange was not
  100: *>          required.
  101: *> \endverbatim
  102: *>
  103: *> \param[in,out] B
  104: *> \verbatim
  105: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  106: *>          On entry, the matrix of right hand side vectors B.
  107: *>          On exit, B is overwritten by the solution vectors X.
  108: *> \endverbatim
  109: *>
  110: *> \param[in] LDB
  111: *> \verbatim
  112: *>          LDB is INTEGER
  113: *>          The leading dimension of the array B.  LDB >= max(1,N).
  114: *> \endverbatim
  115: *
  116: *  Authors:
  117: *  ========
  118: *
  119: *> \author Univ. of Tennessee 
  120: *> \author Univ. of California Berkeley 
  121: *> \author Univ. of Colorado Denver 
  122: *> \author NAG Ltd. 
  123: *
  124: *> \date November 2011
  125: *
  126: *> \ingroup doubleOTHERauxiliary
  127: *
  128: *  =====================================================================
  129:       SUBROUTINE DGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
  130: *
  131: *  -- LAPACK auxiliary routine (version 3.4.0) --
  132: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  133: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  134: *     November 2011
  135: *
  136: *     .. Scalar Arguments ..
  137:       INTEGER            ITRANS, LDB, N, NRHS
  138: *     ..
  139: *     .. Array Arguments ..
  140:       INTEGER            IPIV( * )
  141:       DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
  142: *     ..
  143: *
  144: *  =====================================================================
  145: *
  146: *     .. Local Scalars ..
  147:       INTEGER            I, IP, J
  148:       DOUBLE PRECISION   TEMP
  149: *     ..
  150: *     .. Executable Statements ..
  151: *
  152: *     Quick return if possible
  153: *
  154:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  155:      $   RETURN
  156: *
  157:       IF( ITRANS.EQ.0 ) THEN
  158: *
  159: *        Solve A*X = B using the LU factorization of A,
  160: *        overwriting each right hand side vector with its solution.
  161: *
  162:          IF( NRHS.LE.1 ) THEN
  163:             J = 1
  164:    10       CONTINUE
  165: *
  166: *           Solve L*x = b.
  167: *
  168:             DO 20 I = 1, N - 1
  169:                IP = IPIV( I )
  170:                TEMP = B( I+1-IP+I, J ) - DL( I )*B( IP, J )
  171:                B( I, J ) = B( IP, J )
  172:                B( I+1, J ) = TEMP
  173:    20       CONTINUE
  174: *
  175: *           Solve U*x = b.
  176: *
  177:             B( N, J ) = B( N, J ) / D( N )
  178:             IF( N.GT.1 )
  179:      $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  180:      $                       D( N-1 )
  181:             DO 30 I = N - 2, 1, -1
  182:                B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
  183:      $                     B( I+2, J ) ) / D( I )
  184:    30       CONTINUE
  185:             IF( J.LT.NRHS ) THEN
  186:                J = J + 1
  187:                GO TO 10
  188:             END IF
  189:          ELSE
  190:             DO 60 J = 1, NRHS
  191: *
  192: *              Solve L*x = b.
  193: *
  194:                DO 40 I = 1, N - 1
  195:                   IF( IPIV( I ).EQ.I ) THEN
  196:                      B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
  197:                   ELSE
  198:                      TEMP = B( I, J )
  199:                      B( I, J ) = B( I+1, J )
  200:                      B( I+1, J ) = TEMP - DL( I )*B( I, J )
  201:                   END IF
  202:    40          CONTINUE
  203: *
  204: *              Solve U*x = b.
  205: *
  206:                B( N, J ) = B( N, J ) / D( N )
  207:                IF( N.GT.1 )
  208:      $            B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
  209:      $                          D( N-1 )
  210:                DO 50 I = N - 2, 1, -1
  211:                   B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
  212:      $                        B( I+2, J ) ) / D( I )
  213:    50          CONTINUE
  214:    60       CONTINUE
  215:          END IF
  216:       ELSE
  217: *
  218: *        Solve A**T * X = B.
  219: *
  220:          IF( NRHS.LE.1 ) THEN
  221: *
  222: *           Solve U**T*x = b.
  223: *
  224:             J = 1
  225:    70       CONTINUE
  226:             B( 1, J ) = B( 1, J ) / D( 1 )
  227:             IF( N.GT.1 )
  228:      $         B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
  229:             DO 80 I = 3, N
  230:                B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
  231:      $                     B( I-2, J ) ) / D( I )
  232:    80       CONTINUE
  233: *
  234: *           Solve L**T*x = b.
  235: *
  236:             DO 90 I = N - 1, 1, -1
  237:                IP = IPIV( I )
  238:                TEMP = B( I, J ) - DL( I )*B( I+1, J )
  239:                B( I, J ) = B( IP, J )
  240:                B( IP, J ) = TEMP
  241:    90       CONTINUE
  242:             IF( J.LT.NRHS ) THEN
  243:                J = J + 1
  244:                GO TO 70
  245:             END IF
  246: *
  247:          ELSE
  248:             DO 120 J = 1, NRHS
  249: *
  250: *              Solve U**T*x = b.
  251: *
  252:                B( 1, J ) = B( 1, J ) / D( 1 )
  253:                IF( N.GT.1 )
  254:      $            B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
  255:                DO 100 I = 3, N
  256:                   B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
  257:      $                        DU2( I-2 )*B( I-2, J ) ) / D( I )
  258:   100          CONTINUE
  259:                DO 110 I = N - 1, 1, -1
  260:                   IF( IPIV( I ).EQ.I ) THEN
  261:                      B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
  262:                   ELSE
  263:                      TEMP = B( I+1, J )
  264:                      B( I+1, J ) = B( I, J ) - DL( I )*TEMP
  265:                      B( I, J ) = TEMP
  266:                   END IF
  267:   110          CONTINUE
  268:   120       CONTINUE
  269:          END IF
  270:       END IF
  271: *
  272: *     End of DGTTS2
  273: *
  274:       END

CVSweb interface <joel.bertrand@systella.fr>