File:  [local] / rpl / lapack / lapack / dgtsvx.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:46 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
    2:      $                   DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
    3:      $                   WORK, IWORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          FACT, TRANS
   12:       INTEGER            INFO, LDB, LDX, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * ), IWORK( * )
   17:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
   18:      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
   19:      $                   FERR( * ), WORK( * ), X( LDX, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DGTSVX uses the LU factorization to compute the solution to a real
   26: *  system of linear equations A * X = B or A**T * X = B,
   27: *  where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
   28: *  matrices.
   29: *
   30: *  Error bounds on the solution and a condition estimate are also
   31: *  provided.
   32: *
   33: *  Description
   34: *  ===========
   35: *
   36: *  The following steps are performed:
   37: *
   38: *  1. If FACT = 'N', the LU decomposition is used to factor the matrix A
   39: *     as A = L * U, where L is a product of permutation and unit lower
   40: *     bidiagonal matrices and U is upper triangular with nonzeros in
   41: *     only the main diagonal and first two superdiagonals.
   42: *
   43: *  2. If some U(i,i)=0, so that U is exactly singular, then the routine
   44: *     returns with INFO = i. Otherwise, the factored form of A is used
   45: *     to estimate the condition number of the matrix A.  If the
   46: *     reciprocal of the condition number is less than machine precision,
   47: *     INFO = N+1 is returned as a warning, but the routine still goes on
   48: *     to solve for X and compute error bounds as described below.
   49: *
   50: *  3. The system of equations is solved for X using the factored form
   51: *     of A.
   52: *
   53: *  4. Iterative refinement is applied to improve the computed solution
   54: *     matrix and calculate error bounds and backward error estimates
   55: *     for it.
   56: *
   57: *  Arguments
   58: *  =========
   59: *
   60: *  FACT    (input) CHARACTER*1
   61: *          Specifies whether or not the factored form of A has been
   62: *          supplied on entry.
   63: *          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored
   64: *                  form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
   65: *                  will not be modified.
   66: *          = 'N':  The matrix will be copied to DLF, DF, and DUF
   67: *                  and factored.
   68: *
   69: *  TRANS   (input) CHARACTER*1
   70: *          Specifies the form of the system of equations:
   71: *          = 'N':  A * X = B     (No transpose)
   72: *          = 'T':  A**T * X = B  (Transpose)
   73: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   74: *
   75: *  N       (input) INTEGER
   76: *          The order of the matrix A.  N >= 0.
   77: *
   78: *  NRHS    (input) INTEGER
   79: *          The number of right hand sides, i.e., the number of columns
   80: *          of the matrix B.  NRHS >= 0.
   81: *
   82: *  DL      (input) DOUBLE PRECISION array, dimension (N-1)
   83: *          The (n-1) subdiagonal elements of A.
   84: *
   85: *  D       (input) DOUBLE PRECISION array, dimension (N)
   86: *          The n diagonal elements of A.
   87: *
   88: *  DU      (input) DOUBLE PRECISION array, dimension (N-1)
   89: *          The (n-1) superdiagonal elements of A.
   90: *
   91: *  DLF     (input or output) DOUBLE PRECISION array, dimension (N-1)
   92: *          If FACT = 'F', then DLF is an input argument and on entry
   93: *          contains the (n-1) multipliers that define the matrix L from
   94: *          the LU factorization of A as computed by DGTTRF.
   95: *
   96: *          If FACT = 'N', then DLF is an output argument and on exit
   97: *          contains the (n-1) multipliers that define the matrix L from
   98: *          the LU factorization of A.
   99: *
  100: *  DF      (input or output) DOUBLE PRECISION array, dimension (N)
  101: *          If FACT = 'F', then DF is an input argument and on entry
  102: *          contains the n diagonal elements of the upper triangular
  103: *          matrix U from the LU factorization of A.
  104: *
  105: *          If FACT = 'N', then DF is an output argument and on exit
  106: *          contains the n diagonal elements of the upper triangular
  107: *          matrix U from the LU factorization of A.
  108: *
  109: *  DUF     (input or output) DOUBLE PRECISION array, dimension (N-1)
  110: *          If FACT = 'F', then DUF is an input argument and on entry
  111: *          contains the (n-1) elements of the first superdiagonal of U.
  112: *
  113: *          If FACT = 'N', then DUF is an output argument and on exit
  114: *          contains the (n-1) elements of the first superdiagonal of U.
  115: *
  116: *  DU2     (input or output) DOUBLE PRECISION array, dimension (N-2)
  117: *          If FACT = 'F', then DU2 is an input argument and on entry
  118: *          contains the (n-2) elements of the second superdiagonal of
  119: *          U.
  120: *
  121: *          If FACT = 'N', then DU2 is an output argument and on exit
  122: *          contains the (n-2) elements of the second superdiagonal of
  123: *          U.
  124: *
  125: *  IPIV    (input or output) INTEGER array, dimension (N)
  126: *          If FACT = 'F', then IPIV is an input argument and on entry
  127: *          contains the pivot indices from the LU factorization of A as
  128: *          computed by DGTTRF.
  129: *
  130: *          If FACT = 'N', then IPIV is an output argument and on exit
  131: *          contains the pivot indices from the LU factorization of A;
  132: *          row i of the matrix was interchanged with row IPIV(i).
  133: *          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
  134: *          a row interchange was not required.
  135: *
  136: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
  137: *          The N-by-NRHS right hand side matrix B.
  138: *
  139: *  LDB     (input) INTEGER
  140: *          The leading dimension of the array B.  LDB >= max(1,N).
  141: *
  142: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  143: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
  144: *
  145: *  LDX     (input) INTEGER
  146: *          The leading dimension of the array X.  LDX >= max(1,N).
  147: *
  148: *  RCOND   (output) DOUBLE PRECISION
  149: *          The estimate of the reciprocal condition number of the matrix
  150: *          A.  If RCOND is less than the machine precision (in
  151: *          particular, if RCOND = 0), the matrix is singular to working
  152: *          precision.  This condition is indicated by a return code of
  153: *          INFO > 0.
  154: *
  155: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  156: *          The estimated forward error bound for each solution vector
  157: *          X(j) (the j-th column of the solution matrix X).
  158: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  159: *          is an estimated upper bound for the magnitude of the largest
  160: *          element in (X(j) - XTRUE) divided by the magnitude of the
  161: *          largest element in X(j).  The estimate is as reliable as
  162: *          the estimate for RCOND, and is almost always a slight
  163: *          overestimate of the true error.
  164: *
  165: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  166: *          The componentwise relative backward error of each solution
  167: *          vector X(j) (i.e., the smallest relative change in
  168: *          any element of A or B that makes X(j) an exact solution).
  169: *
  170: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
  171: *
  172: *  IWORK   (workspace) INTEGER array, dimension (N)
  173: *
  174: *  INFO    (output) INTEGER
  175: *          = 0:  successful exit
  176: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  177: *          > 0:  if INFO = i, and i is
  178: *                <= N:  U(i,i) is exactly zero.  The factorization
  179: *                       has not been completed unless i = N, but the
  180: *                       factor U is exactly singular, so the solution
  181: *                       and error bounds could not be computed.
  182: *                       RCOND = 0 is returned.
  183: *                = N+1: U is nonsingular, but RCOND is less than machine
  184: *                       precision, meaning that the matrix is singular
  185: *                       to working precision.  Nevertheless, the
  186: *                       solution and error bounds are computed because
  187: *                       there are a number of situations where the
  188: *                       computed solution can be more accurate than the
  189: *                       value of RCOND would suggest.
  190: *
  191: *  =====================================================================
  192: *
  193: *     .. Parameters ..
  194:       DOUBLE PRECISION   ZERO
  195:       PARAMETER          ( ZERO = 0.0D+0 )
  196: *     ..
  197: *     .. Local Scalars ..
  198:       LOGICAL            NOFACT, NOTRAN
  199:       CHARACTER          NORM
  200:       DOUBLE PRECISION   ANORM
  201: *     ..
  202: *     .. External Functions ..
  203:       LOGICAL            LSAME
  204:       DOUBLE PRECISION   DLAMCH, DLANGT
  205:       EXTERNAL           LSAME, DLAMCH, DLANGT
  206: *     ..
  207: *     .. External Subroutines ..
  208:       EXTERNAL           DCOPY, DGTCON, DGTRFS, DGTTRF, DGTTRS, DLACPY,
  209:      $                   XERBLA
  210: *     ..
  211: *     .. Intrinsic Functions ..
  212:       INTRINSIC          MAX
  213: *     ..
  214: *     .. Executable Statements ..
  215: *
  216:       INFO = 0
  217:       NOFACT = LSAME( FACT, 'N' )
  218:       NOTRAN = LSAME( TRANS, 'N' )
  219:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
  220:          INFO = -1
  221:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  222:      $         LSAME( TRANS, 'C' ) ) THEN
  223:          INFO = -2
  224:       ELSE IF( N.LT.0 ) THEN
  225:          INFO = -3
  226:       ELSE IF( NRHS.LT.0 ) THEN
  227:          INFO = -4
  228:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  229:          INFO = -14
  230:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  231:          INFO = -16
  232:       END IF
  233:       IF( INFO.NE.0 ) THEN
  234:          CALL XERBLA( 'DGTSVX', -INFO )
  235:          RETURN
  236:       END IF
  237: *
  238:       IF( NOFACT ) THEN
  239: *
  240: *        Compute the LU factorization of A.
  241: *
  242:          CALL DCOPY( N, D, 1, DF, 1 )
  243:          IF( N.GT.1 ) THEN
  244:             CALL DCOPY( N-1, DL, 1, DLF, 1 )
  245:             CALL DCOPY( N-1, DU, 1, DUF, 1 )
  246:          END IF
  247:          CALL DGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
  248: *
  249: *        Return if INFO is non-zero.
  250: *
  251:          IF( INFO.GT.0 )THEN
  252:             RCOND = ZERO
  253:             RETURN
  254:          END IF
  255:       END IF
  256: *
  257: *     Compute the norm of the matrix A.
  258: *
  259:       IF( NOTRAN ) THEN
  260:          NORM = '1'
  261:       ELSE
  262:          NORM = 'I'
  263:       END IF
  264:       ANORM = DLANGT( NORM, N, DL, D, DU )
  265: *
  266: *     Compute the reciprocal of the condition number of A.
  267: *
  268:       CALL DGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
  269:      $             IWORK, INFO )
  270: *
  271: *     Compute the solution vectors X.
  272: *
  273:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  274:       CALL DGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
  275:      $             INFO )
  276: *
  277: *     Use iterative refinement to improve the computed solutions and
  278: *     compute error bounds and backward error estimates for them.
  279: *
  280:       CALL DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
  281:      $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  282: *
  283: *     Set INFO = N+1 if the matrix is singular to working precision.
  284: *
  285:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  286:      $   INFO = N + 1
  287: *
  288:       RETURN
  289: *
  290: *     End of DGTSVX
  291: *
  292:       END

CVSweb interface <joel.bertrand@systella.fr>