Annotation of rpl/lapack/lapack/dgtsvx.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b DGTSVX
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGTSVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtsvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtsvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtsvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
        !            22: *                          DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
        !            23: *                          WORK, IWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          FACT, TRANS
        !            27: *       INTEGER            INFO, LDB, LDX, N, NRHS
        !            28: *       DOUBLE PRECISION   RCOND
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            IPIV( * ), IWORK( * )
        !            32: *       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
        !            33: *      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
        !            34: *      $                   FERR( * ), WORK( * ), X( LDX, * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> DGTSVX uses the LU factorization to compute the solution to a real
        !            44: *> system of linear equations A * X = B or A**T * X = B,
        !            45: *> where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
        !            46: *> matrices.
        !            47: *>
        !            48: *> Error bounds on the solution and a condition estimate are also
        !            49: *> provided.
        !            50: *> \endverbatim
        !            51: *
        !            52: *> \par Description:
        !            53: *  =================
        !            54: *>
        !            55: *> \verbatim
        !            56: *>
        !            57: *> The following steps are performed:
        !            58: *>
        !            59: *> 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
        !            60: *>    as A = L * U, where L is a product of permutation and unit lower
        !            61: *>    bidiagonal matrices and U is upper triangular with nonzeros in
        !            62: *>    only the main diagonal and first two superdiagonals.
        !            63: *>
        !            64: *> 2. If some U(i,i)=0, so that U is exactly singular, then the routine
        !            65: *>    returns with INFO = i. Otherwise, the factored form of A is used
        !            66: *>    to estimate the condition number of the matrix A.  If the
        !            67: *>    reciprocal of the condition number is less than machine precision,
        !            68: *>    INFO = N+1 is returned as a warning, but the routine still goes on
        !            69: *>    to solve for X and compute error bounds as described below.
        !            70: *>
        !            71: *> 3. The system of equations is solved for X using the factored form
        !            72: *>    of A.
        !            73: *>
        !            74: *> 4. Iterative refinement is applied to improve the computed solution
        !            75: *>    matrix and calculate error bounds and backward error estimates
        !            76: *>    for it.
        !            77: *> \endverbatim
        !            78: *
        !            79: *  Arguments:
        !            80: *  ==========
        !            81: *
        !            82: *> \param[in] FACT
        !            83: *> \verbatim
        !            84: *>          FACT is CHARACTER*1
        !            85: *>          Specifies whether or not the factored form of A has been
        !            86: *>          supplied on entry.
        !            87: *>          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored
        !            88: *>                  form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
        !            89: *>                  will not be modified.
        !            90: *>          = 'N':  The matrix will be copied to DLF, DF, and DUF
        !            91: *>                  and factored.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] TRANS
        !            95: *> \verbatim
        !            96: *>          TRANS is CHARACTER*1
        !            97: *>          Specifies the form of the system of equations:
        !            98: *>          = 'N':  A * X = B     (No transpose)
        !            99: *>          = 'T':  A**T * X = B  (Transpose)
        !           100: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
        !           101: *> \endverbatim
        !           102: *>
        !           103: *> \param[in] N
        !           104: *> \verbatim
        !           105: *>          N is INTEGER
        !           106: *>          The order of the matrix A.  N >= 0.
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[in] NRHS
        !           110: *> \verbatim
        !           111: *>          NRHS is INTEGER
        !           112: *>          The number of right hand sides, i.e., the number of columns
        !           113: *>          of the matrix B.  NRHS >= 0.
        !           114: *> \endverbatim
        !           115: *>
        !           116: *> \param[in] DL
        !           117: *> \verbatim
        !           118: *>          DL is DOUBLE PRECISION array, dimension (N-1)
        !           119: *>          The (n-1) subdiagonal elements of A.
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[in] D
        !           123: *> \verbatim
        !           124: *>          D is DOUBLE PRECISION array, dimension (N)
        !           125: *>          The n diagonal elements of A.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in] DU
        !           129: *> \verbatim
        !           130: *>          DU is DOUBLE PRECISION array, dimension (N-1)
        !           131: *>          The (n-1) superdiagonal elements of A.
        !           132: *> \endverbatim
        !           133: *>
        !           134: *> \param[in,out] DLF
        !           135: *> \verbatim
        !           136: *>          DLF is or output) DOUBLE PRECISION array, dimension (N-1)
        !           137: *>          If FACT = 'F', then DLF is an input argument and on entry
        !           138: *>          contains the (n-1) multipliers that define the matrix L from
        !           139: *>          the LU factorization of A as computed by DGTTRF.
        !           140: *>
        !           141: *>          If FACT = 'N', then DLF is an output argument and on exit
        !           142: *>          contains the (n-1) multipliers that define the matrix L from
        !           143: *>          the LU factorization of A.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[in,out] DF
        !           147: *> \verbatim
        !           148: *>          DF is or output) DOUBLE PRECISION array, dimension (N)
        !           149: *>          If FACT = 'F', then DF is an input argument and on entry
        !           150: *>          contains the n diagonal elements of the upper triangular
        !           151: *>          matrix U from the LU factorization of A.
        !           152: *>
        !           153: *>          If FACT = 'N', then DF is an output argument and on exit
        !           154: *>          contains the n diagonal elements of the upper triangular
        !           155: *>          matrix U from the LU factorization of A.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[in,out] DUF
        !           159: *> \verbatim
        !           160: *>          DUF is or output) DOUBLE PRECISION array, dimension (N-1)
        !           161: *>          If FACT = 'F', then DUF is an input argument and on entry
        !           162: *>          contains the (n-1) elements of the first superdiagonal of U.
        !           163: *>
        !           164: *>          If FACT = 'N', then DUF is an output argument and on exit
        !           165: *>          contains the (n-1) elements of the first superdiagonal of U.
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[in,out] DU2
        !           169: *> \verbatim
        !           170: *>          DU2 is or output) DOUBLE PRECISION array, dimension (N-2)
        !           171: *>          If FACT = 'F', then DU2 is an input argument and on entry
        !           172: *>          contains the (n-2) elements of the second superdiagonal of
        !           173: *>          U.
        !           174: *>
        !           175: *>          If FACT = 'N', then DU2 is an output argument and on exit
        !           176: *>          contains the (n-2) elements of the second superdiagonal of
        !           177: *>          U.
        !           178: *> \endverbatim
        !           179: *>
        !           180: *> \param[in,out] IPIV
        !           181: *> \verbatim
        !           182: *>          IPIV is or output) INTEGER array, dimension (N)
        !           183: *>          If FACT = 'F', then IPIV is an input argument and on entry
        !           184: *>          contains the pivot indices from the LU factorization of A as
        !           185: *>          computed by DGTTRF.
        !           186: *>
        !           187: *>          If FACT = 'N', then IPIV is an output argument and on exit
        !           188: *>          contains the pivot indices from the LU factorization of A;
        !           189: *>          row i of the matrix was interchanged with row IPIV(i).
        !           190: *>          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
        !           191: *>          a row interchange was not required.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[in] B
        !           195: *> \verbatim
        !           196: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           197: *>          The N-by-NRHS right hand side matrix B.
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[in] LDB
        !           201: *> \verbatim
        !           202: *>          LDB is INTEGER
        !           203: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           204: *> \endverbatim
        !           205: *>
        !           206: *> \param[out] X
        !           207: *> \verbatim
        !           208: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           209: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
        !           210: *> \endverbatim
        !           211: *>
        !           212: *> \param[in] LDX
        !           213: *> \verbatim
        !           214: *>          LDX is INTEGER
        !           215: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           216: *> \endverbatim
        !           217: *>
        !           218: *> \param[out] RCOND
        !           219: *> \verbatim
        !           220: *>          RCOND is DOUBLE PRECISION
        !           221: *>          The estimate of the reciprocal condition number of the matrix
        !           222: *>          A.  If RCOND is less than the machine precision (in
        !           223: *>          particular, if RCOND = 0), the matrix is singular to working
        !           224: *>          precision.  This condition is indicated by a return code of
        !           225: *>          INFO > 0.
        !           226: *> \endverbatim
        !           227: *>
        !           228: *> \param[out] FERR
        !           229: *> \verbatim
        !           230: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           231: *>          The estimated forward error bound for each solution vector
        !           232: *>          X(j) (the j-th column of the solution matrix X).
        !           233: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           234: *>          is an estimated upper bound for the magnitude of the largest
        !           235: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           236: *>          largest element in X(j).  The estimate is as reliable as
        !           237: *>          the estimate for RCOND, and is almost always a slight
        !           238: *>          overestimate of the true error.
        !           239: *> \endverbatim
        !           240: *>
        !           241: *> \param[out] BERR
        !           242: *> \verbatim
        !           243: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           244: *>          The componentwise relative backward error of each solution
        !           245: *>          vector X(j) (i.e., the smallest relative change in
        !           246: *>          any element of A or B that makes X(j) an exact solution).
        !           247: *> \endverbatim
        !           248: *>
        !           249: *> \param[out] WORK
        !           250: *> \verbatim
        !           251: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
        !           252: *> \endverbatim
        !           253: *>
        !           254: *> \param[out] IWORK
        !           255: *> \verbatim
        !           256: *>          IWORK is INTEGER array, dimension (N)
        !           257: *> \endverbatim
        !           258: *>
        !           259: *> \param[out] INFO
        !           260: *> \verbatim
        !           261: *>          INFO is INTEGER
        !           262: *>          = 0:  successful exit
        !           263: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           264: *>          > 0:  if INFO = i, and i is
        !           265: *>                <= N:  U(i,i) is exactly zero.  The factorization
        !           266: *>                       has not been completed unless i = N, but the
        !           267: *>                       factor U is exactly singular, so the solution
        !           268: *>                       and error bounds could not be computed.
        !           269: *>                       RCOND = 0 is returned.
        !           270: *>                = N+1: U is nonsingular, but RCOND is less than machine
        !           271: *>                       precision, meaning that the matrix is singular
        !           272: *>                       to working precision.  Nevertheless, the
        !           273: *>                       solution and error bounds are computed because
        !           274: *>                       there are a number of situations where the
        !           275: *>                       computed solution can be more accurate than the
        !           276: *>                       value of RCOND would suggest.
        !           277: *> \endverbatim
        !           278: *
        !           279: *  Authors:
        !           280: *  ========
        !           281: *
        !           282: *> \author Univ. of Tennessee 
        !           283: *> \author Univ. of California Berkeley 
        !           284: *> \author Univ. of Colorado Denver 
        !           285: *> \author NAG Ltd. 
        !           286: *
        !           287: *> \date November 2011
        !           288: *
        !           289: *> \ingroup doubleOTHERcomputational
        !           290: *
        !           291: *  =====================================================================
1.1       bertrand  292:       SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
                    293:      $                   DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
                    294:      $                   WORK, IWORK, INFO )
                    295: *
1.8     ! bertrand  296: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  297: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    298: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  299: *     November 2011
1.1       bertrand  300: *
                    301: *     .. Scalar Arguments ..
                    302:       CHARACTER          FACT, TRANS
                    303:       INTEGER            INFO, LDB, LDX, N, NRHS
                    304:       DOUBLE PRECISION   RCOND
                    305: *     ..
                    306: *     .. Array Arguments ..
                    307:       INTEGER            IPIV( * ), IWORK( * )
                    308:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                    309:      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
                    310:      $                   FERR( * ), WORK( * ), X( LDX, * )
                    311: *     ..
                    312: *
                    313: *  =====================================================================
                    314: *
                    315: *     .. Parameters ..
                    316:       DOUBLE PRECISION   ZERO
                    317:       PARAMETER          ( ZERO = 0.0D+0 )
                    318: *     ..
                    319: *     .. Local Scalars ..
                    320:       LOGICAL            NOFACT, NOTRAN
                    321:       CHARACTER          NORM
                    322:       DOUBLE PRECISION   ANORM
                    323: *     ..
                    324: *     .. External Functions ..
                    325:       LOGICAL            LSAME
                    326:       DOUBLE PRECISION   DLAMCH, DLANGT
                    327:       EXTERNAL           LSAME, DLAMCH, DLANGT
                    328: *     ..
                    329: *     .. External Subroutines ..
                    330:       EXTERNAL           DCOPY, DGTCON, DGTRFS, DGTTRF, DGTTRS, DLACPY,
                    331:      $                   XERBLA
                    332: *     ..
                    333: *     .. Intrinsic Functions ..
                    334:       INTRINSIC          MAX
                    335: *     ..
                    336: *     .. Executable Statements ..
                    337: *
                    338:       INFO = 0
                    339:       NOFACT = LSAME( FACT, 'N' )
                    340:       NOTRAN = LSAME( TRANS, 'N' )
                    341:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
                    342:          INFO = -1
                    343:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    344:      $         LSAME( TRANS, 'C' ) ) THEN
                    345:          INFO = -2
                    346:       ELSE IF( N.LT.0 ) THEN
                    347:          INFO = -3
                    348:       ELSE IF( NRHS.LT.0 ) THEN
                    349:          INFO = -4
                    350:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    351:          INFO = -14
                    352:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    353:          INFO = -16
                    354:       END IF
                    355:       IF( INFO.NE.0 ) THEN
                    356:          CALL XERBLA( 'DGTSVX', -INFO )
                    357:          RETURN
                    358:       END IF
                    359: *
                    360:       IF( NOFACT ) THEN
                    361: *
                    362: *        Compute the LU factorization of A.
                    363: *
                    364:          CALL DCOPY( N, D, 1, DF, 1 )
                    365:          IF( N.GT.1 ) THEN
                    366:             CALL DCOPY( N-1, DL, 1, DLF, 1 )
                    367:             CALL DCOPY( N-1, DU, 1, DUF, 1 )
                    368:          END IF
                    369:          CALL DGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
                    370: *
                    371: *        Return if INFO is non-zero.
                    372: *
                    373:          IF( INFO.GT.0 )THEN
                    374:             RCOND = ZERO
                    375:             RETURN
                    376:          END IF
                    377:       END IF
                    378: *
                    379: *     Compute the norm of the matrix A.
                    380: *
                    381:       IF( NOTRAN ) THEN
                    382:          NORM = '1'
                    383:       ELSE
                    384:          NORM = 'I'
                    385:       END IF
                    386:       ANORM = DLANGT( NORM, N, DL, D, DU )
                    387: *
                    388: *     Compute the reciprocal of the condition number of A.
                    389: *
                    390:       CALL DGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
                    391:      $             IWORK, INFO )
                    392: *
                    393: *     Compute the solution vectors X.
                    394: *
                    395:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    396:       CALL DGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
                    397:      $             INFO )
                    398: *
                    399: *     Use iterative refinement to improve the computed solutions and
                    400: *     compute error bounds and backward error estimates for them.
                    401: *
                    402:       CALL DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
                    403:      $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
                    404: *
                    405: *     Set INFO = N+1 if the matrix is singular to working precision.
                    406: *
                    407:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    408:      $   INFO = N + 1
                    409: *
                    410:       RETURN
                    411: *
                    412: *     End of DGTSVX
                    413: *
                    414:       END

CVSweb interface <joel.bertrand@systella.fr>