Annotation of rpl/lapack/lapack/dgtsvx.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
                      2:      $                   DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
                      3:      $                   WORK, IWORK, INFO )
                      4: *
                      5: *  -- LAPACK routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          FACT, TRANS
                     12:       INTEGER            INFO, LDB, LDX, N, NRHS
                     13:       DOUBLE PRECISION   RCOND
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IPIV( * ), IWORK( * )
                     17:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                     18:      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
                     19:      $                   FERR( * ), WORK( * ), X( LDX, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  DGTSVX uses the LU factorization to compute the solution to a real
                     26: *  system of linear equations A * X = B or A**T * X = B,
                     27: *  where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
                     28: *  matrices.
                     29: *
                     30: *  Error bounds on the solution and a condition estimate are also
                     31: *  provided.
                     32: *
                     33: *  Description
                     34: *  ===========
                     35: *
                     36: *  The following steps are performed:
                     37: *
                     38: *  1. If FACT = 'N', the LU decomposition is used to factor the matrix A
                     39: *     as A = L * U, where L is a product of permutation and unit lower
                     40: *     bidiagonal matrices and U is upper triangular with nonzeros in
                     41: *     only the main diagonal and first two superdiagonals.
                     42: *
                     43: *  2. If some U(i,i)=0, so that U is exactly singular, then the routine
                     44: *     returns with INFO = i. Otherwise, the factored form of A is used
                     45: *     to estimate the condition number of the matrix A.  If the
                     46: *     reciprocal of the condition number is less than machine precision,
                     47: *     INFO = N+1 is returned as a warning, but the routine still goes on
                     48: *     to solve for X and compute error bounds as described below.
                     49: *
                     50: *  3. The system of equations is solved for X using the factored form
                     51: *     of A.
                     52: *
                     53: *  4. Iterative refinement is applied to improve the computed solution
                     54: *     matrix and calculate error bounds and backward error estimates
                     55: *     for it.
                     56: *
                     57: *  Arguments
                     58: *  =========
                     59: *
                     60: *  FACT    (input) CHARACTER*1
                     61: *          Specifies whether or not the factored form of A has been
                     62: *          supplied on entry.
                     63: *          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored
                     64: *                  form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
                     65: *                  will not be modified.
                     66: *          = 'N':  The matrix will be copied to DLF, DF, and DUF
                     67: *                  and factored.
                     68: *
                     69: *  TRANS   (input) CHARACTER*1
                     70: *          Specifies the form of the system of equations:
                     71: *          = 'N':  A * X = B     (No transpose)
                     72: *          = 'T':  A**T * X = B  (Transpose)
                     73: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
                     74: *
                     75: *  N       (input) INTEGER
                     76: *          The order of the matrix A.  N >= 0.
                     77: *
                     78: *  NRHS    (input) INTEGER
                     79: *          The number of right hand sides, i.e., the number of columns
                     80: *          of the matrix B.  NRHS >= 0.
                     81: *
                     82: *  DL      (input) DOUBLE PRECISION array, dimension (N-1)
                     83: *          The (n-1) subdiagonal elements of A.
                     84: *
                     85: *  D       (input) DOUBLE PRECISION array, dimension (N)
                     86: *          The n diagonal elements of A.
                     87: *
                     88: *  DU      (input) DOUBLE PRECISION array, dimension (N-1)
                     89: *          The (n-1) superdiagonal elements of A.
                     90: *
                     91: *  DLF     (input or output) DOUBLE PRECISION array, dimension (N-1)
                     92: *          If FACT = 'F', then DLF is an input argument and on entry
                     93: *          contains the (n-1) multipliers that define the matrix L from
                     94: *          the LU factorization of A as computed by DGTTRF.
                     95: *
                     96: *          If FACT = 'N', then DLF is an output argument and on exit
                     97: *          contains the (n-1) multipliers that define the matrix L from
                     98: *          the LU factorization of A.
                     99: *
                    100: *  DF      (input or output) DOUBLE PRECISION array, dimension (N)
                    101: *          If FACT = 'F', then DF is an input argument and on entry
                    102: *          contains the n diagonal elements of the upper triangular
                    103: *          matrix U from the LU factorization of A.
                    104: *
                    105: *          If FACT = 'N', then DF is an output argument and on exit
                    106: *          contains the n diagonal elements of the upper triangular
                    107: *          matrix U from the LU factorization of A.
                    108: *
                    109: *  DUF     (input or output) DOUBLE PRECISION array, dimension (N-1)
                    110: *          If FACT = 'F', then DUF is an input argument and on entry
                    111: *          contains the (n-1) elements of the first superdiagonal of U.
                    112: *
                    113: *          If FACT = 'N', then DUF is an output argument and on exit
                    114: *          contains the (n-1) elements of the first superdiagonal of U.
                    115: *
                    116: *  DU2     (input or output) DOUBLE PRECISION array, dimension (N-2)
                    117: *          If FACT = 'F', then DU2 is an input argument and on entry
                    118: *          contains the (n-2) elements of the second superdiagonal of
                    119: *          U.
                    120: *
                    121: *          If FACT = 'N', then DU2 is an output argument and on exit
                    122: *          contains the (n-2) elements of the second superdiagonal of
                    123: *          U.
                    124: *
                    125: *  IPIV    (input or output) INTEGER array, dimension (N)
                    126: *          If FACT = 'F', then IPIV is an input argument and on entry
                    127: *          contains the pivot indices from the LU factorization of A as
                    128: *          computed by DGTTRF.
                    129: *
                    130: *          If FACT = 'N', then IPIV is an output argument and on exit
                    131: *          contains the pivot indices from the LU factorization of A;
                    132: *          row i of the matrix was interchanged with row IPIV(i).
                    133: *          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
                    134: *          a row interchange was not required.
                    135: *
                    136: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
                    137: *          The N-by-NRHS right hand side matrix B.
                    138: *
                    139: *  LDB     (input) INTEGER
                    140: *          The leading dimension of the array B.  LDB >= max(1,N).
                    141: *
                    142: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
                    143: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
                    144: *
                    145: *  LDX     (input) INTEGER
                    146: *          The leading dimension of the array X.  LDX >= max(1,N).
                    147: *
                    148: *  RCOND   (output) DOUBLE PRECISION
                    149: *          The estimate of the reciprocal condition number of the matrix
                    150: *          A.  If RCOND is less than the machine precision (in
                    151: *          particular, if RCOND = 0), the matrix is singular to working
                    152: *          precision.  This condition is indicated by a return code of
                    153: *          INFO > 0.
                    154: *
                    155: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    156: *          The estimated forward error bound for each solution vector
                    157: *          X(j) (the j-th column of the solution matrix X).
                    158: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    159: *          is an estimated upper bound for the magnitude of the largest
                    160: *          element in (X(j) - XTRUE) divided by the magnitude of the
                    161: *          largest element in X(j).  The estimate is as reliable as
                    162: *          the estimate for RCOND, and is almost always a slight
                    163: *          overestimate of the true error.
                    164: *
                    165: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                    166: *          The componentwise relative backward error of each solution
                    167: *          vector X(j) (i.e., the smallest relative change in
                    168: *          any element of A or B that makes X(j) an exact solution).
                    169: *
                    170: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
                    171: *
                    172: *  IWORK   (workspace) INTEGER array, dimension (N)
                    173: *
                    174: *  INFO    (output) INTEGER
                    175: *          = 0:  successful exit
                    176: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    177: *          > 0:  if INFO = i, and i is
                    178: *                <= N:  U(i,i) is exactly zero.  The factorization
                    179: *                       has not been completed unless i = N, but the
                    180: *                       factor U is exactly singular, so the solution
                    181: *                       and error bounds could not be computed.
                    182: *                       RCOND = 0 is returned.
                    183: *                = N+1: U is nonsingular, but RCOND is less than machine
                    184: *                       precision, meaning that the matrix is singular
                    185: *                       to working precision.  Nevertheless, the
                    186: *                       solution and error bounds are computed because
                    187: *                       there are a number of situations where the
                    188: *                       computed solution can be more accurate than the
                    189: *                       value of RCOND would suggest.
                    190: *
                    191: *  =====================================================================
                    192: *
                    193: *     .. Parameters ..
                    194:       DOUBLE PRECISION   ZERO
                    195:       PARAMETER          ( ZERO = 0.0D+0 )
                    196: *     ..
                    197: *     .. Local Scalars ..
                    198:       LOGICAL            NOFACT, NOTRAN
                    199:       CHARACTER          NORM
                    200:       DOUBLE PRECISION   ANORM
                    201: *     ..
                    202: *     .. External Functions ..
                    203:       LOGICAL            LSAME
                    204:       DOUBLE PRECISION   DLAMCH, DLANGT
                    205:       EXTERNAL           LSAME, DLAMCH, DLANGT
                    206: *     ..
                    207: *     .. External Subroutines ..
                    208:       EXTERNAL           DCOPY, DGTCON, DGTRFS, DGTTRF, DGTTRS, DLACPY,
                    209:      $                   XERBLA
                    210: *     ..
                    211: *     .. Intrinsic Functions ..
                    212:       INTRINSIC          MAX
                    213: *     ..
                    214: *     .. Executable Statements ..
                    215: *
                    216:       INFO = 0
                    217:       NOFACT = LSAME( FACT, 'N' )
                    218:       NOTRAN = LSAME( TRANS, 'N' )
                    219:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
                    220:          INFO = -1
                    221:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    222:      $         LSAME( TRANS, 'C' ) ) THEN
                    223:          INFO = -2
                    224:       ELSE IF( N.LT.0 ) THEN
                    225:          INFO = -3
                    226:       ELSE IF( NRHS.LT.0 ) THEN
                    227:          INFO = -4
                    228:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    229:          INFO = -14
                    230:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    231:          INFO = -16
                    232:       END IF
                    233:       IF( INFO.NE.0 ) THEN
                    234:          CALL XERBLA( 'DGTSVX', -INFO )
                    235:          RETURN
                    236:       END IF
                    237: *
                    238:       IF( NOFACT ) THEN
                    239: *
                    240: *        Compute the LU factorization of A.
                    241: *
                    242:          CALL DCOPY( N, D, 1, DF, 1 )
                    243:          IF( N.GT.1 ) THEN
                    244:             CALL DCOPY( N-1, DL, 1, DLF, 1 )
                    245:             CALL DCOPY( N-1, DU, 1, DUF, 1 )
                    246:          END IF
                    247:          CALL DGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
                    248: *
                    249: *        Return if INFO is non-zero.
                    250: *
                    251:          IF( INFO.GT.0 )THEN
                    252:             RCOND = ZERO
                    253:             RETURN
                    254:          END IF
                    255:       END IF
                    256: *
                    257: *     Compute the norm of the matrix A.
                    258: *
                    259:       IF( NOTRAN ) THEN
                    260:          NORM = '1'
                    261:       ELSE
                    262:          NORM = 'I'
                    263:       END IF
                    264:       ANORM = DLANGT( NORM, N, DL, D, DU )
                    265: *
                    266: *     Compute the reciprocal of the condition number of A.
                    267: *
                    268:       CALL DGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
                    269:      $             IWORK, INFO )
                    270: *
                    271: *     Compute the solution vectors X.
                    272: *
                    273:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    274:       CALL DGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
                    275:      $             INFO )
                    276: *
                    277: *     Use iterative refinement to improve the computed solutions and
                    278: *     compute error bounds and backward error estimates for them.
                    279: *
                    280:       CALL DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
                    281:      $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
                    282: *
                    283: *     Set INFO = N+1 if the matrix is singular to working precision.
                    284: *
                    285:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    286:      $   INFO = N + 1
                    287: *
                    288:       RETURN
                    289: *
                    290: *     End of DGTSVX
                    291: *
                    292:       END

CVSweb interface <joel.bertrand@systella.fr>