Annotation of rpl/lapack/lapack/dgtsvx.f, revision 1.19

1.16      bertrand    1: *> \brief <b> DGTSVX computes the solution to system of linear equations A * X = B for GT matrices </b>
1.8       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DGTSVX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtsvx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtsvx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtsvx.f">
1.8       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
                     22: *                          DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
                     23: *                          WORK, IWORK, INFO )
1.16      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          FACT, TRANS
                     27: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     28: *       DOUBLE PRECISION   RCOND
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IPIV( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                     33: *      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
                     34: *      $                   FERR( * ), WORK( * ), X( LDX, * )
                     35: *       ..
1.16      bertrand   36: *
1.8       bertrand   37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DGTSVX uses the LU factorization to compute the solution to a real
                     44: *> system of linear equations A * X = B or A**T * X = B,
                     45: *> where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
                     46: *> matrices.
                     47: *>
                     48: *> Error bounds on the solution and a condition estimate are also
                     49: *> provided.
                     50: *> \endverbatim
                     51: *
                     52: *> \par Description:
                     53: *  =================
                     54: *>
                     55: *> \verbatim
                     56: *>
                     57: *> The following steps are performed:
                     58: *>
                     59: *> 1. If FACT = 'N', the LU decomposition is used to factor the matrix A
                     60: *>    as A = L * U, where L is a product of permutation and unit lower
                     61: *>    bidiagonal matrices and U is upper triangular with nonzeros in
                     62: *>    only the main diagonal and first two superdiagonals.
                     63: *>
                     64: *> 2. If some U(i,i)=0, so that U is exactly singular, then the routine
                     65: *>    returns with INFO = i. Otherwise, the factored form of A is used
                     66: *>    to estimate the condition number of the matrix A.  If the
                     67: *>    reciprocal of the condition number is less than machine precision,
                     68: *>    INFO = N+1 is returned as a warning, but the routine still goes on
                     69: *>    to solve for X and compute error bounds as described below.
                     70: *>
                     71: *> 3. The system of equations is solved for X using the factored form
                     72: *>    of A.
                     73: *>
                     74: *> 4. Iterative refinement is applied to improve the computed solution
                     75: *>    matrix and calculate error bounds and backward error estimates
                     76: *>    for it.
                     77: *> \endverbatim
                     78: *
                     79: *  Arguments:
                     80: *  ==========
                     81: *
                     82: *> \param[in] FACT
                     83: *> \verbatim
                     84: *>          FACT is CHARACTER*1
                     85: *>          Specifies whether or not the factored form of A has been
                     86: *>          supplied on entry.
                     87: *>          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored
                     88: *>                  form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
                     89: *>                  will not be modified.
                     90: *>          = 'N':  The matrix will be copied to DLF, DF, and DUF
                     91: *>                  and factored.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] TRANS
                     95: *> \verbatim
                     96: *>          TRANS is CHARACTER*1
                     97: *>          Specifies the form of the system of equations:
                     98: *>          = 'N':  A * X = B     (No transpose)
                     99: *>          = 'T':  A**T * X = B  (Transpose)
                    100: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] N
                    104: *> \verbatim
                    105: *>          N is INTEGER
                    106: *>          The order of the matrix A.  N >= 0.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] NRHS
                    110: *> \verbatim
                    111: *>          NRHS is INTEGER
                    112: *>          The number of right hand sides, i.e., the number of columns
                    113: *>          of the matrix B.  NRHS >= 0.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] DL
                    117: *> \verbatim
                    118: *>          DL is DOUBLE PRECISION array, dimension (N-1)
                    119: *>          The (n-1) subdiagonal elements of A.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] D
                    123: *> \verbatim
                    124: *>          D is DOUBLE PRECISION array, dimension (N)
                    125: *>          The n diagonal elements of A.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] DU
                    129: *> \verbatim
                    130: *>          DU is DOUBLE PRECISION array, dimension (N-1)
                    131: *>          The (n-1) superdiagonal elements of A.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in,out] DLF
                    135: *> \verbatim
1.10      bertrand  136: *>          DLF is DOUBLE PRECISION array, dimension (N-1)
1.8       bertrand  137: *>          If FACT = 'F', then DLF is an input argument and on entry
                    138: *>          contains the (n-1) multipliers that define the matrix L from
                    139: *>          the LU factorization of A as computed by DGTTRF.
                    140: *>
                    141: *>          If FACT = 'N', then DLF is an output argument and on exit
                    142: *>          contains the (n-1) multipliers that define the matrix L from
                    143: *>          the LU factorization of A.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in,out] DF
                    147: *> \verbatim
1.10      bertrand  148: *>          DF is DOUBLE PRECISION array, dimension (N)
1.8       bertrand  149: *>          If FACT = 'F', then DF is an input argument and on entry
                    150: *>          contains the n diagonal elements of the upper triangular
                    151: *>          matrix U from the LU factorization of A.
                    152: *>
                    153: *>          If FACT = 'N', then DF is an output argument and on exit
                    154: *>          contains the n diagonal elements of the upper triangular
                    155: *>          matrix U from the LU factorization of A.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in,out] DUF
                    159: *> \verbatim
1.10      bertrand  160: *>          DUF is DOUBLE PRECISION array, dimension (N-1)
1.8       bertrand  161: *>          If FACT = 'F', then DUF is an input argument and on entry
                    162: *>          contains the (n-1) elements of the first superdiagonal of U.
                    163: *>
                    164: *>          If FACT = 'N', then DUF is an output argument and on exit
                    165: *>          contains the (n-1) elements of the first superdiagonal of U.
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[in,out] DU2
                    169: *> \verbatim
1.10      bertrand  170: *>          DU2 is DOUBLE PRECISION array, dimension (N-2)
1.8       bertrand  171: *>          If FACT = 'F', then DU2 is an input argument and on entry
                    172: *>          contains the (n-2) elements of the second superdiagonal of
                    173: *>          U.
                    174: *>
                    175: *>          If FACT = 'N', then DU2 is an output argument and on exit
                    176: *>          contains the (n-2) elements of the second superdiagonal of
                    177: *>          U.
                    178: *> \endverbatim
                    179: *>
                    180: *> \param[in,out] IPIV
                    181: *> \verbatim
1.10      bertrand  182: *>          IPIV is INTEGER array, dimension (N)
1.8       bertrand  183: *>          If FACT = 'F', then IPIV is an input argument and on entry
                    184: *>          contains the pivot indices from the LU factorization of A as
                    185: *>          computed by DGTTRF.
                    186: *>
                    187: *>          If FACT = 'N', then IPIV is an output argument and on exit
                    188: *>          contains the pivot indices from the LU factorization of A;
                    189: *>          row i of the matrix was interchanged with row IPIV(i).
                    190: *>          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
                    191: *>          a row interchange was not required.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[in] B
                    195: *> \verbatim
                    196: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    197: *>          The N-by-NRHS right hand side matrix B.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LDB
                    201: *> \verbatim
                    202: *>          LDB is INTEGER
                    203: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[out] X
                    207: *> \verbatim
                    208: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    209: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[in] LDX
                    213: *> \verbatim
                    214: *>          LDX is INTEGER
                    215: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    216: *> \endverbatim
                    217: *>
                    218: *> \param[out] RCOND
                    219: *> \verbatim
                    220: *>          RCOND is DOUBLE PRECISION
                    221: *>          The estimate of the reciprocal condition number of the matrix
                    222: *>          A.  If RCOND is less than the machine precision (in
                    223: *>          particular, if RCOND = 0), the matrix is singular to working
                    224: *>          precision.  This condition is indicated by a return code of
                    225: *>          INFO > 0.
                    226: *> \endverbatim
                    227: *>
                    228: *> \param[out] FERR
                    229: *> \verbatim
                    230: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    231: *>          The estimated forward error bound for each solution vector
                    232: *>          X(j) (the j-th column of the solution matrix X).
                    233: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    234: *>          is an estimated upper bound for the magnitude of the largest
                    235: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    236: *>          largest element in X(j).  The estimate is as reliable as
                    237: *>          the estimate for RCOND, and is almost always a slight
                    238: *>          overestimate of the true error.
                    239: *> \endverbatim
                    240: *>
                    241: *> \param[out] BERR
                    242: *> \verbatim
                    243: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    244: *>          The componentwise relative backward error of each solution
                    245: *>          vector X(j) (i.e., the smallest relative change in
                    246: *>          any element of A or B that makes X(j) an exact solution).
                    247: *> \endverbatim
                    248: *>
                    249: *> \param[out] WORK
                    250: *> \verbatim
                    251: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    252: *> \endverbatim
                    253: *>
                    254: *> \param[out] IWORK
                    255: *> \verbatim
                    256: *>          IWORK is INTEGER array, dimension (N)
                    257: *> \endverbatim
                    258: *>
                    259: *> \param[out] INFO
                    260: *> \verbatim
                    261: *>          INFO is INTEGER
                    262: *>          = 0:  successful exit
                    263: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    264: *>          > 0:  if INFO = i, and i is
                    265: *>                <= N:  U(i,i) is exactly zero.  The factorization
                    266: *>                       has not been completed unless i = N, but the
                    267: *>                       factor U is exactly singular, so the solution
                    268: *>                       and error bounds could not be computed.
                    269: *>                       RCOND = 0 is returned.
                    270: *>                = N+1: U is nonsingular, but RCOND is less than machine
                    271: *>                       precision, meaning that the matrix is singular
                    272: *>                       to working precision.  Nevertheless, the
                    273: *>                       solution and error bounds are computed because
                    274: *>                       there are a number of situations where the
                    275: *>                       computed solution can be more accurate than the
                    276: *>                       value of RCOND would suggest.
                    277: *> \endverbatim
                    278: *
                    279: *  Authors:
                    280: *  ========
                    281: *
1.16      bertrand  282: *> \author Univ. of Tennessee
                    283: *> \author Univ. of California Berkeley
                    284: *> \author Univ. of Colorado Denver
                    285: *> \author NAG Ltd.
1.8       bertrand  286: *
1.12      bertrand  287: *> \ingroup doubleGTsolve
1.8       bertrand  288: *
                    289: *  =====================================================================
1.1       bertrand  290:       SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
                    291:      $                   DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
                    292:      $                   WORK, IWORK, INFO )
                    293: *
1.19    ! bertrand  294: *  -- LAPACK driver routine --
1.1       bertrand  295: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    296: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    297: *
                    298: *     .. Scalar Arguments ..
                    299:       CHARACTER          FACT, TRANS
                    300:       INTEGER            INFO, LDB, LDX, N, NRHS
                    301:       DOUBLE PRECISION   RCOND
                    302: *     ..
                    303: *     .. Array Arguments ..
                    304:       INTEGER            IPIV( * ), IWORK( * )
                    305:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                    306:      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
                    307:      $                   FERR( * ), WORK( * ), X( LDX, * )
                    308: *     ..
                    309: *
                    310: *  =====================================================================
                    311: *
                    312: *     .. Parameters ..
                    313:       DOUBLE PRECISION   ZERO
                    314:       PARAMETER          ( ZERO = 0.0D+0 )
                    315: *     ..
                    316: *     .. Local Scalars ..
                    317:       LOGICAL            NOFACT, NOTRAN
                    318:       CHARACTER          NORM
                    319:       DOUBLE PRECISION   ANORM
                    320: *     ..
                    321: *     .. External Functions ..
                    322:       LOGICAL            LSAME
                    323:       DOUBLE PRECISION   DLAMCH, DLANGT
                    324:       EXTERNAL           LSAME, DLAMCH, DLANGT
                    325: *     ..
                    326: *     .. External Subroutines ..
                    327:       EXTERNAL           DCOPY, DGTCON, DGTRFS, DGTTRF, DGTTRS, DLACPY,
                    328:      $                   XERBLA
                    329: *     ..
                    330: *     .. Intrinsic Functions ..
                    331:       INTRINSIC          MAX
                    332: *     ..
                    333: *     .. Executable Statements ..
                    334: *
                    335:       INFO = 0
                    336:       NOFACT = LSAME( FACT, 'N' )
                    337:       NOTRAN = LSAME( TRANS, 'N' )
                    338:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
                    339:          INFO = -1
                    340:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    341:      $         LSAME( TRANS, 'C' ) ) THEN
                    342:          INFO = -2
                    343:       ELSE IF( N.LT.0 ) THEN
                    344:          INFO = -3
                    345:       ELSE IF( NRHS.LT.0 ) THEN
                    346:          INFO = -4
                    347:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    348:          INFO = -14
                    349:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    350:          INFO = -16
                    351:       END IF
                    352:       IF( INFO.NE.0 ) THEN
                    353:          CALL XERBLA( 'DGTSVX', -INFO )
                    354:          RETURN
                    355:       END IF
                    356: *
                    357:       IF( NOFACT ) THEN
                    358: *
                    359: *        Compute the LU factorization of A.
                    360: *
                    361:          CALL DCOPY( N, D, 1, DF, 1 )
                    362:          IF( N.GT.1 ) THEN
                    363:             CALL DCOPY( N-1, DL, 1, DLF, 1 )
                    364:             CALL DCOPY( N-1, DU, 1, DUF, 1 )
                    365:          END IF
                    366:          CALL DGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
                    367: *
                    368: *        Return if INFO is non-zero.
                    369: *
                    370:          IF( INFO.GT.0 )THEN
                    371:             RCOND = ZERO
                    372:             RETURN
                    373:          END IF
                    374:       END IF
                    375: *
                    376: *     Compute the norm of the matrix A.
                    377: *
                    378:       IF( NOTRAN ) THEN
                    379:          NORM = '1'
                    380:       ELSE
                    381:          NORM = 'I'
                    382:       END IF
                    383:       ANORM = DLANGT( NORM, N, DL, D, DU )
                    384: *
                    385: *     Compute the reciprocal of the condition number of A.
                    386: *
                    387:       CALL DGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
                    388:      $             IWORK, INFO )
                    389: *
                    390: *     Compute the solution vectors X.
                    391: *
                    392:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    393:       CALL DGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
                    394:      $             INFO )
                    395: *
                    396: *     Use iterative refinement to improve the computed solutions and
                    397: *     compute error bounds and backward error estimates for them.
                    398: *
                    399:       CALL DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
                    400:      $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
                    401: *
                    402: *     Set INFO = N+1 if the matrix is singular to working precision.
                    403: *
                    404:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    405:      $   INFO = N + 1
                    406: *
                    407:       RETURN
                    408: *
                    409: *     End of DGTSVX
                    410: *
                    411:       END

CVSweb interface <joel.bertrand@systella.fr>