Annotation of rpl/lapack/lapack/dgtsvx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGTSVX( FACT, TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF,
        !             2:      $                   DU2, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR,
        !             3:      $                   WORK, IWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          FACT, TRANS
        !            12:       INTEGER            INFO, LDB, LDX, N, NRHS
        !            13:       DOUBLE PRECISION   RCOND
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IPIV( * ), IWORK( * )
        !            17:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
        !            18:      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
        !            19:      $                   FERR( * ), WORK( * ), X( LDX, * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  DGTSVX uses the LU factorization to compute the solution to a real
        !            26: *  system of linear equations A * X = B or A**T * X = B,
        !            27: *  where A is a tridiagonal matrix of order N and X and B are N-by-NRHS
        !            28: *  matrices.
        !            29: *
        !            30: *  Error bounds on the solution and a condition estimate are also
        !            31: *  provided.
        !            32: *
        !            33: *  Description
        !            34: *  ===========
        !            35: *
        !            36: *  The following steps are performed:
        !            37: *
        !            38: *  1. If FACT = 'N', the LU decomposition is used to factor the matrix A
        !            39: *     as A = L * U, where L is a product of permutation and unit lower
        !            40: *     bidiagonal matrices and U is upper triangular with nonzeros in
        !            41: *     only the main diagonal and first two superdiagonals.
        !            42: *
        !            43: *  2. If some U(i,i)=0, so that U is exactly singular, then the routine
        !            44: *     returns with INFO = i. Otherwise, the factored form of A is used
        !            45: *     to estimate the condition number of the matrix A.  If the
        !            46: *     reciprocal of the condition number is less than machine precision,
        !            47: *     INFO = N+1 is returned as a warning, but the routine still goes on
        !            48: *     to solve for X and compute error bounds as described below.
        !            49: *
        !            50: *  3. The system of equations is solved for X using the factored form
        !            51: *     of A.
        !            52: *
        !            53: *  4. Iterative refinement is applied to improve the computed solution
        !            54: *     matrix and calculate error bounds and backward error estimates
        !            55: *     for it.
        !            56: *
        !            57: *  Arguments
        !            58: *  =========
        !            59: *
        !            60: *  FACT    (input) CHARACTER*1
        !            61: *          Specifies whether or not the factored form of A has been
        !            62: *          supplied on entry.
        !            63: *          = 'F':  DLF, DF, DUF, DU2, and IPIV contain the factored
        !            64: *                  form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV
        !            65: *                  will not be modified.
        !            66: *          = 'N':  The matrix will be copied to DLF, DF, and DUF
        !            67: *                  and factored.
        !            68: *
        !            69: *  TRANS   (input) CHARACTER*1
        !            70: *          Specifies the form of the system of equations:
        !            71: *          = 'N':  A * X = B     (No transpose)
        !            72: *          = 'T':  A**T * X = B  (Transpose)
        !            73: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
        !            74: *
        !            75: *  N       (input) INTEGER
        !            76: *          The order of the matrix A.  N >= 0.
        !            77: *
        !            78: *  NRHS    (input) INTEGER
        !            79: *          The number of right hand sides, i.e., the number of columns
        !            80: *          of the matrix B.  NRHS >= 0.
        !            81: *
        !            82: *  DL      (input) DOUBLE PRECISION array, dimension (N-1)
        !            83: *          The (n-1) subdiagonal elements of A.
        !            84: *
        !            85: *  D       (input) DOUBLE PRECISION array, dimension (N)
        !            86: *          The n diagonal elements of A.
        !            87: *
        !            88: *  DU      (input) DOUBLE PRECISION array, dimension (N-1)
        !            89: *          The (n-1) superdiagonal elements of A.
        !            90: *
        !            91: *  DLF     (input or output) DOUBLE PRECISION array, dimension (N-1)
        !            92: *          If FACT = 'F', then DLF is an input argument and on entry
        !            93: *          contains the (n-1) multipliers that define the matrix L from
        !            94: *          the LU factorization of A as computed by DGTTRF.
        !            95: *
        !            96: *          If FACT = 'N', then DLF is an output argument and on exit
        !            97: *          contains the (n-1) multipliers that define the matrix L from
        !            98: *          the LU factorization of A.
        !            99: *
        !           100: *  DF      (input or output) DOUBLE PRECISION array, dimension (N)
        !           101: *          If FACT = 'F', then DF is an input argument and on entry
        !           102: *          contains the n diagonal elements of the upper triangular
        !           103: *          matrix U from the LU factorization of A.
        !           104: *
        !           105: *          If FACT = 'N', then DF is an output argument and on exit
        !           106: *          contains the n diagonal elements of the upper triangular
        !           107: *          matrix U from the LU factorization of A.
        !           108: *
        !           109: *  DUF     (input or output) DOUBLE PRECISION array, dimension (N-1)
        !           110: *          If FACT = 'F', then DUF is an input argument and on entry
        !           111: *          contains the (n-1) elements of the first superdiagonal of U.
        !           112: *
        !           113: *          If FACT = 'N', then DUF is an output argument and on exit
        !           114: *          contains the (n-1) elements of the first superdiagonal of U.
        !           115: *
        !           116: *  DU2     (input or output) DOUBLE PRECISION array, dimension (N-2)
        !           117: *          If FACT = 'F', then DU2 is an input argument and on entry
        !           118: *          contains the (n-2) elements of the second superdiagonal of
        !           119: *          U.
        !           120: *
        !           121: *          If FACT = 'N', then DU2 is an output argument and on exit
        !           122: *          contains the (n-2) elements of the second superdiagonal of
        !           123: *          U.
        !           124: *
        !           125: *  IPIV    (input or output) INTEGER array, dimension (N)
        !           126: *          If FACT = 'F', then IPIV is an input argument and on entry
        !           127: *          contains the pivot indices from the LU factorization of A as
        !           128: *          computed by DGTTRF.
        !           129: *
        !           130: *          If FACT = 'N', then IPIV is an output argument and on exit
        !           131: *          contains the pivot indices from the LU factorization of A;
        !           132: *          row i of the matrix was interchanged with row IPIV(i).
        !           133: *          IPIV(i) will always be either i or i+1; IPIV(i) = i indicates
        !           134: *          a row interchange was not required.
        !           135: *
        !           136: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           137: *          The N-by-NRHS right hand side matrix B.
        !           138: *
        !           139: *  LDB     (input) INTEGER
        !           140: *          The leading dimension of the array B.  LDB >= max(1,N).
        !           141: *
        !           142: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           143: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
        !           144: *
        !           145: *  LDX     (input) INTEGER
        !           146: *          The leading dimension of the array X.  LDX >= max(1,N).
        !           147: *
        !           148: *  RCOND   (output) DOUBLE PRECISION
        !           149: *          The estimate of the reciprocal condition number of the matrix
        !           150: *          A.  If RCOND is less than the machine precision (in
        !           151: *          particular, if RCOND = 0), the matrix is singular to working
        !           152: *          precision.  This condition is indicated by a return code of
        !           153: *          INFO > 0.
        !           154: *
        !           155: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           156: *          The estimated forward error bound for each solution vector
        !           157: *          X(j) (the j-th column of the solution matrix X).
        !           158: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           159: *          is an estimated upper bound for the magnitude of the largest
        !           160: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !           161: *          largest element in X(j).  The estimate is as reliable as
        !           162: *          the estimate for RCOND, and is almost always a slight
        !           163: *          overestimate of the true error.
        !           164: *
        !           165: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           166: *          The componentwise relative backward error of each solution
        !           167: *          vector X(j) (i.e., the smallest relative change in
        !           168: *          any element of A or B that makes X(j) an exact solution).
        !           169: *
        !           170: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
        !           171: *
        !           172: *  IWORK   (workspace) INTEGER array, dimension (N)
        !           173: *
        !           174: *  INFO    (output) INTEGER
        !           175: *          = 0:  successful exit
        !           176: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           177: *          > 0:  if INFO = i, and i is
        !           178: *                <= N:  U(i,i) is exactly zero.  The factorization
        !           179: *                       has not been completed unless i = N, but the
        !           180: *                       factor U is exactly singular, so the solution
        !           181: *                       and error bounds could not be computed.
        !           182: *                       RCOND = 0 is returned.
        !           183: *                = N+1: U is nonsingular, but RCOND is less than machine
        !           184: *                       precision, meaning that the matrix is singular
        !           185: *                       to working precision.  Nevertheless, the
        !           186: *                       solution and error bounds are computed because
        !           187: *                       there are a number of situations where the
        !           188: *                       computed solution can be more accurate than the
        !           189: *                       value of RCOND would suggest.
        !           190: *
        !           191: *  =====================================================================
        !           192: *
        !           193: *     .. Parameters ..
        !           194:       DOUBLE PRECISION   ZERO
        !           195:       PARAMETER          ( ZERO = 0.0D+0 )
        !           196: *     ..
        !           197: *     .. Local Scalars ..
        !           198:       LOGICAL            NOFACT, NOTRAN
        !           199:       CHARACTER          NORM
        !           200:       DOUBLE PRECISION   ANORM
        !           201: *     ..
        !           202: *     .. External Functions ..
        !           203:       LOGICAL            LSAME
        !           204:       DOUBLE PRECISION   DLAMCH, DLANGT
        !           205:       EXTERNAL           LSAME, DLAMCH, DLANGT
        !           206: *     ..
        !           207: *     .. External Subroutines ..
        !           208:       EXTERNAL           DCOPY, DGTCON, DGTRFS, DGTTRF, DGTTRS, DLACPY,
        !           209:      $                   XERBLA
        !           210: *     ..
        !           211: *     .. Intrinsic Functions ..
        !           212:       INTRINSIC          MAX
        !           213: *     ..
        !           214: *     .. Executable Statements ..
        !           215: *
        !           216:       INFO = 0
        !           217:       NOFACT = LSAME( FACT, 'N' )
        !           218:       NOTRAN = LSAME( TRANS, 'N' )
        !           219:       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
        !           220:          INFO = -1
        !           221:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
        !           222:      $         LSAME( TRANS, 'C' ) ) THEN
        !           223:          INFO = -2
        !           224:       ELSE IF( N.LT.0 ) THEN
        !           225:          INFO = -3
        !           226:       ELSE IF( NRHS.LT.0 ) THEN
        !           227:          INFO = -4
        !           228:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           229:          INFO = -14
        !           230:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           231:          INFO = -16
        !           232:       END IF
        !           233:       IF( INFO.NE.0 ) THEN
        !           234:          CALL XERBLA( 'DGTSVX', -INFO )
        !           235:          RETURN
        !           236:       END IF
        !           237: *
        !           238:       IF( NOFACT ) THEN
        !           239: *
        !           240: *        Compute the LU factorization of A.
        !           241: *
        !           242:          CALL DCOPY( N, D, 1, DF, 1 )
        !           243:          IF( N.GT.1 ) THEN
        !           244:             CALL DCOPY( N-1, DL, 1, DLF, 1 )
        !           245:             CALL DCOPY( N-1, DU, 1, DUF, 1 )
        !           246:          END IF
        !           247:          CALL DGTTRF( N, DLF, DF, DUF, DU2, IPIV, INFO )
        !           248: *
        !           249: *        Return if INFO is non-zero.
        !           250: *
        !           251:          IF( INFO.GT.0 )THEN
        !           252:             RCOND = ZERO
        !           253:             RETURN
        !           254:          END IF
        !           255:       END IF
        !           256: *
        !           257: *     Compute the norm of the matrix A.
        !           258: *
        !           259:       IF( NOTRAN ) THEN
        !           260:          NORM = '1'
        !           261:       ELSE
        !           262:          NORM = 'I'
        !           263:       END IF
        !           264:       ANORM = DLANGT( NORM, N, DL, D, DU )
        !           265: *
        !           266: *     Compute the reciprocal of the condition number of A.
        !           267: *
        !           268:       CALL DGTCON( NORM, N, DLF, DF, DUF, DU2, IPIV, ANORM, RCOND, WORK,
        !           269:      $             IWORK, INFO )
        !           270: *
        !           271: *     Compute the solution vectors X.
        !           272: *
        !           273:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
        !           274:       CALL DGTTRS( TRANS, N, NRHS, DLF, DF, DUF, DU2, IPIV, X, LDX,
        !           275:      $             INFO )
        !           276: *
        !           277: *     Use iterative refinement to improve the computed solutions and
        !           278: *     compute error bounds and backward error estimates for them.
        !           279: *
        !           280:       CALL DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
        !           281:      $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
        !           282: *
        !           283: *     Set INFO = N+1 if the matrix is singular to working precision.
        !           284: *
        !           285:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
        !           286:      $   INFO = N + 1
        !           287: *
        !           288:       RETURN
        !           289: *
        !           290: *     End of DGTSVX
        !           291: *
        !           292:       END

CVSweb interface <joel.bertrand@systella.fr>