File:  [local] / rpl / lapack / lapack / dgtrfs.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
    2:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
    3:      $                   INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   11: *
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          TRANS
   14:       INTEGER            INFO, LDB, LDX, N, NRHS
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IPIV( * ), IWORK( * )
   18:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
   19:      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
   20:      $                   FERR( * ), WORK( * ), X( LDX, * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  DGTRFS improves the computed solution to a system of linear
   27: *  equations when the coefficient matrix is tridiagonal, and provides
   28: *  error bounds and backward error estimates for the solution.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  TRANS   (input) CHARACTER*1
   34: *          Specifies the form of the system of equations:
   35: *          = 'N':  A * X = B     (No transpose)
   36: *          = 'T':  A**T * X = B  (Transpose)
   37: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   38: *
   39: *  N       (input) INTEGER
   40: *          The order of the matrix A.  N >= 0.
   41: *
   42: *  NRHS    (input) INTEGER
   43: *          The number of right hand sides, i.e., the number of columns
   44: *          of the matrix B.  NRHS >= 0.
   45: *
   46: *  DL      (input) DOUBLE PRECISION array, dimension (N-1)
   47: *          The (n-1) subdiagonal elements of A.
   48: *
   49: *  D       (input) DOUBLE PRECISION array, dimension (N)
   50: *          The diagonal elements of A.
   51: *
   52: *  DU      (input) DOUBLE PRECISION array, dimension (N-1)
   53: *          The (n-1) superdiagonal elements of A.
   54: *
   55: *  DLF     (input) DOUBLE PRECISION array, dimension (N-1)
   56: *          The (n-1) multipliers that define the matrix L from the
   57: *          LU factorization of A as computed by DGTTRF.
   58: *
   59: *  DF      (input) DOUBLE PRECISION array, dimension (N)
   60: *          The n diagonal elements of the upper triangular matrix U from
   61: *          the LU factorization of A.
   62: *
   63: *  DUF     (input) DOUBLE PRECISION array, dimension (N-1)
   64: *          The (n-1) elements of the first superdiagonal of U.
   65: *
   66: *  DU2     (input) DOUBLE PRECISION array, dimension (N-2)
   67: *          The (n-2) elements of the second superdiagonal of U.
   68: *
   69: *  IPIV    (input) INTEGER array, dimension (N)
   70: *          The pivot indices; for 1 <= i <= n, row i of the matrix was
   71: *          interchanged with row IPIV(i).  IPIV(i) will always be either
   72: *          i or i+1; IPIV(i) = i indicates a row interchange was not
   73: *          required.
   74: *
   75: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   76: *          The right hand side matrix B.
   77: *
   78: *  LDB     (input) INTEGER
   79: *          The leading dimension of the array B.  LDB >= max(1,N).
   80: *
   81: *  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
   82: *          On entry, the solution matrix X, as computed by DGTTRS.
   83: *          On exit, the improved solution matrix X.
   84: *
   85: *  LDX     (input) INTEGER
   86: *          The leading dimension of the array X.  LDX >= max(1,N).
   87: *
   88: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   89: *          The estimated forward error bound for each solution vector
   90: *          X(j) (the j-th column of the solution matrix X).
   91: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   92: *          is an estimated upper bound for the magnitude of the largest
   93: *          element in (X(j) - XTRUE) divided by the magnitude of the
   94: *          largest element in X(j).  The estimate is as reliable as
   95: *          the estimate for RCOND, and is almost always a slight
   96: *          overestimate of the true error.
   97: *
   98: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   99: *          The componentwise relative backward error of each solution
  100: *          vector X(j) (i.e., the smallest relative change in
  101: *          any element of A or B that makes X(j) an exact solution).
  102: *
  103: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
  104: *
  105: *  IWORK   (workspace) INTEGER array, dimension (N)
  106: *
  107: *  INFO    (output) INTEGER
  108: *          = 0:  successful exit
  109: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  110: *
  111: *  Internal Parameters
  112: *  ===================
  113: *
  114: *  ITMAX is the maximum number of steps of iterative refinement.
  115: *
  116: *  =====================================================================
  117: *
  118: *     .. Parameters ..
  119:       INTEGER            ITMAX
  120:       PARAMETER          ( ITMAX = 5 )
  121:       DOUBLE PRECISION   ZERO, ONE
  122:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  123:       DOUBLE PRECISION   TWO
  124:       PARAMETER          ( TWO = 2.0D+0 )
  125:       DOUBLE PRECISION   THREE
  126:       PARAMETER          ( THREE = 3.0D+0 )
  127: *     ..
  128: *     .. Local Scalars ..
  129:       LOGICAL            NOTRAN
  130:       CHARACTER          TRANSN, TRANST
  131:       INTEGER            COUNT, I, J, KASE, NZ
  132:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
  133: *     ..
  134: *     .. Local Arrays ..
  135:       INTEGER            ISAVE( 3 )
  136: *     ..
  137: *     .. External Subroutines ..
  138:       EXTERNAL           DAXPY, DCOPY, DGTTRS, DLACN2, DLAGTM, XERBLA
  139: *     ..
  140: *     .. Intrinsic Functions ..
  141:       INTRINSIC          ABS, MAX
  142: *     ..
  143: *     .. External Functions ..
  144:       LOGICAL            LSAME
  145:       DOUBLE PRECISION   DLAMCH
  146:       EXTERNAL           LSAME, DLAMCH
  147: *     ..
  148: *     .. Executable Statements ..
  149: *
  150: *     Test the input parameters.
  151: *
  152:       INFO = 0
  153:       NOTRAN = LSAME( TRANS, 'N' )
  154:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  155:      $    LSAME( TRANS, 'C' ) ) THEN
  156:          INFO = -1
  157:       ELSE IF( N.LT.0 ) THEN
  158:          INFO = -2
  159:       ELSE IF( NRHS.LT.0 ) THEN
  160:          INFO = -3
  161:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  162:          INFO = -13
  163:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  164:          INFO = -15
  165:       END IF
  166:       IF( INFO.NE.0 ) THEN
  167:          CALL XERBLA( 'DGTRFS', -INFO )
  168:          RETURN
  169:       END IF
  170: *
  171: *     Quick return if possible
  172: *
  173:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  174:          DO 10 J = 1, NRHS
  175:             FERR( J ) = ZERO
  176:             BERR( J ) = ZERO
  177:    10    CONTINUE
  178:          RETURN
  179:       END IF
  180: *
  181:       IF( NOTRAN ) THEN
  182:          TRANSN = 'N'
  183:          TRANST = 'T'
  184:       ELSE
  185:          TRANSN = 'T'
  186:          TRANST = 'N'
  187:       END IF
  188: *
  189: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  190: *
  191:       NZ = 4
  192:       EPS = DLAMCH( 'Epsilon' )
  193:       SAFMIN = DLAMCH( 'Safe minimum' )
  194:       SAFE1 = NZ*SAFMIN
  195:       SAFE2 = SAFE1 / EPS
  196: *
  197: *     Do for each right hand side
  198: *
  199:       DO 110 J = 1, NRHS
  200: *
  201:          COUNT = 1
  202:          LSTRES = THREE
  203:    20    CONTINUE
  204: *
  205: *        Loop until stopping criterion is satisfied.
  206: *
  207: *        Compute residual R = B - op(A) * X,
  208: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  209: *
  210:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  211:          CALL DLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
  212:      $                WORK( N+1 ), N )
  213: *
  214: *        Compute abs(op(A))*abs(x) + abs(b) for use in the backward
  215: *        error bound.
  216: *
  217:          IF( NOTRAN ) THEN
  218:             IF( N.EQ.1 ) THEN
  219:                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
  220:             ELSE
  221:                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
  222:      $                     ABS( DU( 1 )*X( 2, J ) )
  223:                DO 30 I = 2, N - 1
  224:                   WORK( I ) = ABS( B( I, J ) ) +
  225:      $                        ABS( DL( I-1 )*X( I-1, J ) ) +
  226:      $                        ABS( D( I )*X( I, J ) ) +
  227:      $                        ABS( DU( I )*X( I+1, J ) )
  228:    30          CONTINUE
  229:                WORK( N ) = ABS( B( N, J ) ) +
  230:      $                     ABS( DL( N-1 )*X( N-1, J ) ) +
  231:      $                     ABS( D( N )*X( N, J ) )
  232:             END IF
  233:          ELSE
  234:             IF( N.EQ.1 ) THEN
  235:                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
  236:             ELSE
  237:                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
  238:      $                     ABS( DL( 1 )*X( 2, J ) )
  239:                DO 40 I = 2, N - 1
  240:                   WORK( I ) = ABS( B( I, J ) ) +
  241:      $                        ABS( DU( I-1 )*X( I-1, J ) ) +
  242:      $                        ABS( D( I )*X( I, J ) ) +
  243:      $                        ABS( DL( I )*X( I+1, J ) )
  244:    40          CONTINUE
  245:                WORK( N ) = ABS( B( N, J ) ) +
  246:      $                     ABS( DU( N-1 )*X( N-1, J ) ) +
  247:      $                     ABS( D( N )*X( N, J ) )
  248:             END IF
  249:          END IF
  250: *
  251: *        Compute componentwise relative backward error from formula
  252: *
  253: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  254: *
  255: *        where abs(Z) is the componentwise absolute value of the matrix
  256: *        or vector Z.  If the i-th component of the denominator is less
  257: *        than SAFE2, then SAFE1 is added to the i-th components of the
  258: *        numerator and denominator before dividing.
  259: *
  260:          S = ZERO
  261:          DO 50 I = 1, N
  262:             IF( WORK( I ).GT.SAFE2 ) THEN
  263:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  264:             ELSE
  265:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  266:      $             ( WORK( I )+SAFE1 ) )
  267:             END IF
  268:    50    CONTINUE
  269:          BERR( J ) = S
  270: *
  271: *        Test stopping criterion. Continue iterating if
  272: *           1) The residual BERR(J) is larger than machine epsilon, and
  273: *           2) BERR(J) decreased by at least a factor of 2 during the
  274: *              last iteration, and
  275: *           3) At most ITMAX iterations tried.
  276: *
  277:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  278:      $       COUNT.LE.ITMAX ) THEN
  279: *
  280: *           Update solution and try again.
  281: *
  282:             CALL DGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV,
  283:      $                   WORK( N+1 ), N, INFO )
  284:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  285:             LSTRES = BERR( J )
  286:             COUNT = COUNT + 1
  287:             GO TO 20
  288:          END IF
  289: *
  290: *        Bound error from formula
  291: *
  292: *        norm(X - XTRUE) / norm(X) .le. FERR =
  293: *        norm( abs(inv(op(A)))*
  294: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  295: *
  296: *        where
  297: *          norm(Z) is the magnitude of the largest component of Z
  298: *          inv(op(A)) is the inverse of op(A)
  299: *          abs(Z) is the componentwise absolute value of the matrix or
  300: *             vector Z
  301: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  302: *          EPS is machine epsilon
  303: *
  304: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  305: *        is incremented by SAFE1 if the i-th component of
  306: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  307: *
  308: *        Use DLACN2 to estimate the infinity-norm of the matrix
  309: *           inv(op(A)) * diag(W),
  310: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  311: *
  312:          DO 60 I = 1, N
  313:             IF( WORK( I ).GT.SAFE2 ) THEN
  314:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  315:             ELSE
  316:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  317:             END IF
  318:    60    CONTINUE
  319: *
  320:          KASE = 0
  321:    70    CONTINUE
  322:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  323:      $                KASE, ISAVE )
  324:          IF( KASE.NE.0 ) THEN
  325:             IF( KASE.EQ.1 ) THEN
  326: *
  327: *              Multiply by diag(W)*inv(op(A)**T).
  328: *
  329:                CALL DGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV,
  330:      $                      WORK( N+1 ), N, INFO )
  331:                DO 80 I = 1, N
  332:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  333:    80          CONTINUE
  334:             ELSE
  335: *
  336: *              Multiply by inv(op(A))*diag(W).
  337: *
  338:                DO 90 I = 1, N
  339:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  340:    90          CONTINUE
  341:                CALL DGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV,
  342:      $                      WORK( N+1 ), N, INFO )
  343:             END IF
  344:             GO TO 70
  345:          END IF
  346: *
  347: *        Normalize error.
  348: *
  349:          LSTRES = ZERO
  350:          DO 100 I = 1, N
  351:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  352:   100    CONTINUE
  353:          IF( LSTRES.NE.ZERO )
  354:      $      FERR( J ) = FERR( J ) / LSTRES
  355: *
  356:   110 CONTINUE
  357: *
  358:       RETURN
  359: *
  360: *     End of DGTRFS
  361: *
  362:       END

CVSweb interface <joel.bertrand@systella.fr>