Annotation of rpl/lapack/lapack/dgtrfs.f, revision 1.18

1.8       bertrand    1: *> \brief \b DGTRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGTRFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtrfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtrfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtrfs.f">
1.8       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
                     22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
                     23: *                          INFO )
1.15      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          TRANS
                     27: *       INTEGER            INFO, LDB, LDX, N, NRHS
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IPIV( * ), IWORK( * )
                     31: *       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                     32: *      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
                     33: *      $                   FERR( * ), WORK( * ), X( LDX, * )
                     34: *       ..
1.15      bertrand   35: *
1.8       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> DGTRFS improves the computed solution to a system of linear
                     43: *> equations when the coefficient matrix is tridiagonal, and provides
                     44: *> error bounds and backward error estimates for the solution.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] TRANS
                     51: *> \verbatim
                     52: *>          TRANS is CHARACTER*1
                     53: *>          Specifies the form of the system of equations:
                     54: *>          = 'N':  A * X = B     (No transpose)
                     55: *>          = 'T':  A**T * X = B  (Transpose)
                     56: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] N
                     60: *> \verbatim
                     61: *>          N is INTEGER
                     62: *>          The order of the matrix A.  N >= 0.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] NRHS
                     66: *> \verbatim
                     67: *>          NRHS is INTEGER
                     68: *>          The number of right hand sides, i.e., the number of columns
                     69: *>          of the matrix B.  NRHS >= 0.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] DL
                     73: *> \verbatim
                     74: *>          DL is DOUBLE PRECISION array, dimension (N-1)
                     75: *>          The (n-1) subdiagonal elements of A.
                     76: *> \endverbatim
                     77: *>
                     78: *> \param[in] D
                     79: *> \verbatim
                     80: *>          D is DOUBLE PRECISION array, dimension (N)
                     81: *>          The diagonal elements of A.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] DU
                     85: *> \verbatim
                     86: *>          DU is DOUBLE PRECISION array, dimension (N-1)
                     87: *>          The (n-1) superdiagonal elements of A.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in] DLF
                     91: *> \verbatim
                     92: *>          DLF is DOUBLE PRECISION array, dimension (N-1)
                     93: *>          The (n-1) multipliers that define the matrix L from the
                     94: *>          LU factorization of A as computed by DGTTRF.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] DF
                     98: *> \verbatim
                     99: *>          DF is DOUBLE PRECISION array, dimension (N)
                    100: *>          The n diagonal elements of the upper triangular matrix U from
                    101: *>          the LU factorization of A.
                    102: *> \endverbatim
                    103: *>
                    104: *> \param[in] DUF
                    105: *> \verbatim
                    106: *>          DUF is DOUBLE PRECISION array, dimension (N-1)
                    107: *>          The (n-1) elements of the first superdiagonal of U.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] DU2
                    111: *> \verbatim
                    112: *>          DU2 is DOUBLE PRECISION array, dimension (N-2)
                    113: *>          The (n-2) elements of the second superdiagonal of U.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] IPIV
                    117: *> \verbatim
                    118: *>          IPIV is INTEGER array, dimension (N)
                    119: *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
                    120: *>          interchanged with row IPIV(i).  IPIV(i) will always be either
                    121: *>          i or i+1; IPIV(i) = i indicates a row interchange was not
                    122: *>          required.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] B
                    126: *> \verbatim
                    127: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    128: *>          The right hand side matrix B.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[in] LDB
                    132: *> \verbatim
                    133: *>          LDB is INTEGER
                    134: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in,out] X
                    138: *> \verbatim
                    139: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    140: *>          On entry, the solution matrix X, as computed by DGTTRS.
                    141: *>          On exit, the improved solution matrix X.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in] LDX
                    145: *> \verbatim
                    146: *>          LDX is INTEGER
                    147: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] FERR
                    151: *> \verbatim
                    152: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    153: *>          The estimated forward error bound for each solution vector
                    154: *>          X(j) (the j-th column of the solution matrix X).
                    155: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    156: *>          is an estimated upper bound for the magnitude of the largest
                    157: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    158: *>          largest element in X(j).  The estimate is as reliable as
                    159: *>          the estimate for RCOND, and is almost always a slight
                    160: *>          overestimate of the true error.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] BERR
                    164: *> \verbatim
                    165: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    166: *>          The componentwise relative backward error of each solution
                    167: *>          vector X(j) (i.e., the smallest relative change in
                    168: *>          any element of A or B that makes X(j) an exact solution).
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[out] WORK
                    172: *> \verbatim
                    173: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[out] IWORK
                    177: *> \verbatim
                    178: *>          IWORK is INTEGER array, dimension (N)
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[out] INFO
                    182: *> \verbatim
                    183: *>          INFO is INTEGER
                    184: *>          = 0:  successful exit
                    185: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    186: *> \endverbatim
                    187: *
                    188: *> \par Internal Parameters:
                    189: *  =========================
                    190: *>
                    191: *> \verbatim
                    192: *>  ITMAX is the maximum number of steps of iterative refinement.
                    193: *> \endverbatim
                    194: *
                    195: *  Authors:
                    196: *  ========
                    197: *
1.15      bertrand  198: *> \author Univ. of Tennessee
                    199: *> \author Univ. of California Berkeley
                    200: *> \author Univ. of Colorado Denver
                    201: *> \author NAG Ltd.
1.8       bertrand  202: *
1.11      bertrand  203: *> \ingroup doubleGTcomputational
1.8       bertrand  204: *
                    205: *  =====================================================================
1.1       bertrand  206:       SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
                    207:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
                    208:      $                   INFO )
                    209: *
1.18    ! bertrand  210: *  -- LAPACK computational routine --
1.1       bertrand  211: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    212: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    213: *
                    214: *     .. Scalar Arguments ..
                    215:       CHARACTER          TRANS
                    216:       INTEGER            INFO, LDB, LDX, N, NRHS
                    217: *     ..
                    218: *     .. Array Arguments ..
                    219:       INTEGER            IPIV( * ), IWORK( * )
                    220:       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
                    221:      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
                    222:      $                   FERR( * ), WORK( * ), X( LDX, * )
                    223: *     ..
                    224: *
                    225: *  =====================================================================
                    226: *
                    227: *     .. Parameters ..
                    228:       INTEGER            ITMAX
                    229:       PARAMETER          ( ITMAX = 5 )
                    230:       DOUBLE PRECISION   ZERO, ONE
                    231:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    232:       DOUBLE PRECISION   TWO
                    233:       PARAMETER          ( TWO = 2.0D+0 )
                    234:       DOUBLE PRECISION   THREE
                    235:       PARAMETER          ( THREE = 3.0D+0 )
                    236: *     ..
                    237: *     .. Local Scalars ..
                    238:       LOGICAL            NOTRAN
                    239:       CHARACTER          TRANSN, TRANST
                    240:       INTEGER            COUNT, I, J, KASE, NZ
                    241:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
                    242: *     ..
                    243: *     .. Local Arrays ..
                    244:       INTEGER            ISAVE( 3 )
                    245: *     ..
                    246: *     .. External Subroutines ..
                    247:       EXTERNAL           DAXPY, DCOPY, DGTTRS, DLACN2, DLAGTM, XERBLA
                    248: *     ..
                    249: *     .. Intrinsic Functions ..
                    250:       INTRINSIC          ABS, MAX
                    251: *     ..
                    252: *     .. External Functions ..
                    253:       LOGICAL            LSAME
                    254:       DOUBLE PRECISION   DLAMCH
                    255:       EXTERNAL           LSAME, DLAMCH
                    256: *     ..
                    257: *     .. Executable Statements ..
                    258: *
                    259: *     Test the input parameters.
                    260: *
                    261:       INFO = 0
                    262:       NOTRAN = LSAME( TRANS, 'N' )
                    263:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    264:      $    LSAME( TRANS, 'C' ) ) THEN
                    265:          INFO = -1
                    266:       ELSE IF( N.LT.0 ) THEN
                    267:          INFO = -2
                    268:       ELSE IF( NRHS.LT.0 ) THEN
                    269:          INFO = -3
                    270:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    271:          INFO = -13
                    272:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    273:          INFO = -15
                    274:       END IF
                    275:       IF( INFO.NE.0 ) THEN
                    276:          CALL XERBLA( 'DGTRFS', -INFO )
                    277:          RETURN
                    278:       END IF
                    279: *
                    280: *     Quick return if possible
                    281: *
                    282:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    283:          DO 10 J = 1, NRHS
                    284:             FERR( J ) = ZERO
                    285:             BERR( J ) = ZERO
                    286:    10    CONTINUE
                    287:          RETURN
                    288:       END IF
                    289: *
                    290:       IF( NOTRAN ) THEN
                    291:          TRANSN = 'N'
                    292:          TRANST = 'T'
                    293:       ELSE
                    294:          TRANSN = 'T'
                    295:          TRANST = 'N'
                    296:       END IF
                    297: *
                    298: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    299: *
                    300:       NZ = 4
                    301:       EPS = DLAMCH( 'Epsilon' )
                    302:       SAFMIN = DLAMCH( 'Safe minimum' )
                    303:       SAFE1 = NZ*SAFMIN
                    304:       SAFE2 = SAFE1 / EPS
                    305: *
                    306: *     Do for each right hand side
                    307: *
                    308:       DO 110 J = 1, NRHS
                    309: *
                    310:          COUNT = 1
                    311:          LSTRES = THREE
                    312:    20    CONTINUE
                    313: *
                    314: *        Loop until stopping criterion is satisfied.
                    315: *
                    316: *        Compute residual R = B - op(A) * X,
                    317: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    318: *
                    319:          CALL DCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
                    320:          CALL DLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
                    321:      $                WORK( N+1 ), N )
                    322: *
                    323: *        Compute abs(op(A))*abs(x) + abs(b) for use in the backward
                    324: *        error bound.
                    325: *
                    326:          IF( NOTRAN ) THEN
                    327:             IF( N.EQ.1 ) THEN
                    328:                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
                    329:             ELSE
                    330:                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
                    331:      $                     ABS( DU( 1 )*X( 2, J ) )
                    332:                DO 30 I = 2, N - 1
                    333:                   WORK( I ) = ABS( B( I, J ) ) +
                    334:      $                        ABS( DL( I-1 )*X( I-1, J ) ) +
                    335:      $                        ABS( D( I )*X( I, J ) ) +
                    336:      $                        ABS( DU( I )*X( I+1, J ) )
                    337:    30          CONTINUE
                    338:                WORK( N ) = ABS( B( N, J ) ) +
                    339:      $                     ABS( DL( N-1 )*X( N-1, J ) ) +
                    340:      $                     ABS( D( N )*X( N, J ) )
                    341:             END IF
                    342:          ELSE
                    343:             IF( N.EQ.1 ) THEN
                    344:                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
                    345:             ELSE
                    346:                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
                    347:      $                     ABS( DL( 1 )*X( 2, J ) )
                    348:                DO 40 I = 2, N - 1
                    349:                   WORK( I ) = ABS( B( I, J ) ) +
                    350:      $                        ABS( DU( I-1 )*X( I-1, J ) ) +
                    351:      $                        ABS( D( I )*X( I, J ) ) +
                    352:      $                        ABS( DL( I )*X( I+1, J ) )
                    353:    40          CONTINUE
                    354:                WORK( N ) = ABS( B( N, J ) ) +
                    355:      $                     ABS( DU( N-1 )*X( N-1, J ) ) +
                    356:      $                     ABS( D( N )*X( N, J ) )
                    357:             END IF
                    358:          END IF
                    359: *
                    360: *        Compute componentwise relative backward error from formula
                    361: *
                    362: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    363: *
                    364: *        where abs(Z) is the componentwise absolute value of the matrix
                    365: *        or vector Z.  If the i-th component of the denominator is less
                    366: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    367: *        numerator and denominator before dividing.
                    368: *
                    369:          S = ZERO
                    370:          DO 50 I = 1, N
                    371:             IF( WORK( I ).GT.SAFE2 ) THEN
                    372:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
                    373:             ELSE
                    374:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
                    375:      $             ( WORK( I )+SAFE1 ) )
                    376:             END IF
                    377:    50    CONTINUE
                    378:          BERR( J ) = S
                    379: *
                    380: *        Test stopping criterion. Continue iterating if
                    381: *           1) The residual BERR(J) is larger than machine epsilon, and
                    382: *           2) BERR(J) decreased by at least a factor of 2 during the
                    383: *              last iteration, and
                    384: *           3) At most ITMAX iterations tried.
                    385: *
                    386:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    387:      $       COUNT.LE.ITMAX ) THEN
                    388: *
                    389: *           Update solution and try again.
                    390: *
                    391:             CALL DGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV,
                    392:      $                   WORK( N+1 ), N, INFO )
                    393:             CALL DAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
                    394:             LSTRES = BERR( J )
                    395:             COUNT = COUNT + 1
                    396:             GO TO 20
                    397:          END IF
                    398: *
                    399: *        Bound error from formula
                    400: *
                    401: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    402: *        norm( abs(inv(op(A)))*
                    403: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    404: *
                    405: *        where
                    406: *          norm(Z) is the magnitude of the largest component of Z
                    407: *          inv(op(A)) is the inverse of op(A)
                    408: *          abs(Z) is the componentwise absolute value of the matrix or
                    409: *             vector Z
                    410: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    411: *          EPS is machine epsilon
                    412: *
                    413: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    414: *        is incremented by SAFE1 if the i-th component of
                    415: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    416: *
                    417: *        Use DLACN2 to estimate the infinity-norm of the matrix
                    418: *           inv(op(A)) * diag(W),
                    419: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    420: *
                    421:          DO 60 I = 1, N
                    422:             IF( WORK( I ).GT.SAFE2 ) THEN
                    423:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
                    424:             ELSE
                    425:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
                    426:             END IF
                    427:    60    CONTINUE
                    428: *
                    429:          KASE = 0
                    430:    70    CONTINUE
                    431:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
                    432:      $                KASE, ISAVE )
                    433:          IF( KASE.NE.0 ) THEN
                    434:             IF( KASE.EQ.1 ) THEN
                    435: *
                    436: *              Multiply by diag(W)*inv(op(A)**T).
                    437: *
                    438:                CALL DGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV,
                    439:      $                      WORK( N+1 ), N, INFO )
                    440:                DO 80 I = 1, N
                    441:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    442:    80          CONTINUE
                    443:             ELSE
                    444: *
                    445: *              Multiply by inv(op(A))*diag(W).
                    446: *
                    447:                DO 90 I = 1, N
                    448:                   WORK( N+I ) = WORK( I )*WORK( N+I )
                    449:    90          CONTINUE
                    450:                CALL DGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV,
                    451:      $                      WORK( N+1 ), N, INFO )
                    452:             END IF
                    453:             GO TO 70
                    454:          END IF
                    455: *
                    456: *        Normalize error.
                    457: *
                    458:          LSTRES = ZERO
                    459:          DO 100 I = 1, N
                    460:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
                    461:   100    CONTINUE
                    462:          IF( LSTRES.NE.ZERO )
                    463:      $      FERR( J ) = FERR( J ) / LSTRES
                    464: *
                    465:   110 CONTINUE
                    466: *
                    467:       RETURN
                    468: *
                    469: *     End of DGTRFS
                    470: *
                    471:       END

CVSweb interface <joel.bertrand@systella.fr>