File:  [local] / rpl / lapack / lapack / dggsvp3.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:51 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGGSVP3
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGGSVP3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvp3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvp3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvp3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
   22: *                           TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
   23: *                           IWORK, TAU, WORK, LWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBQ, JOBU, JOBV
   27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
   28: *       DOUBLE PRECISION   TOLA, TOLB
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IWORK( * )
   32: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   33: *      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DGGSVP3 computes orthogonal matrices U, V and Q such that
   43: *>
   44: *>                    N-K-L  K    L
   45: *>  U**T*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
   46: *>                 L ( 0     0   A23 )
   47: *>             M-K-L ( 0     0    0  )
   48: *>
   49: *>                  N-K-L  K    L
   50: *>         =     K ( 0    A12  A13 )  if M-K-L < 0;
   51: *>             M-K ( 0     0   A23 )
   52: *>
   53: *>                  N-K-L  K    L
   54: *>  V**T*B*Q =   L ( 0     0   B13 )
   55: *>             P-L ( 0     0    0  )
   56: *>
   57: *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
   58: *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
   59: *> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
   60: *> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
   61: *>
   62: *> This decomposition is the preprocessing step for computing the
   63: *> Generalized Singular Value Decomposition (GSVD), see subroutine
   64: *> DGGSVD3.
   65: *> \endverbatim
   66: *
   67: *  Arguments:
   68: *  ==========
   69: *
   70: *> \param[in] JOBU
   71: *> \verbatim
   72: *>          JOBU is CHARACTER*1
   73: *>          = 'U':  Orthogonal matrix U is computed;
   74: *>          = 'N':  U is not computed.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] JOBV
   78: *> \verbatim
   79: *>          JOBV is CHARACTER*1
   80: *>          = 'V':  Orthogonal matrix V is computed;
   81: *>          = 'N':  V is not computed.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] JOBQ
   85: *> \verbatim
   86: *>          JOBQ is CHARACTER*1
   87: *>          = 'Q':  Orthogonal matrix Q is computed;
   88: *>          = 'N':  Q is not computed.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] M
   92: *> \verbatim
   93: *>          M is INTEGER
   94: *>          The number of rows of the matrix A.  M >= 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] P
   98: *> \verbatim
   99: *>          P is INTEGER
  100: *>          The number of rows of the matrix B.  P >= 0.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] N
  104: *> \verbatim
  105: *>          N is INTEGER
  106: *>          The number of columns of the matrices A and B.  N >= 0.
  107: *> \endverbatim
  108: *>
  109: *> \param[in,out] A
  110: *> \verbatim
  111: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  112: *>          On entry, the M-by-N matrix A.
  113: *>          On exit, A contains the triangular (or trapezoidal) matrix
  114: *>          described in the Purpose section.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] LDA
  118: *> \verbatim
  119: *>          LDA is INTEGER
  120: *>          The leading dimension of the array A. LDA >= max(1,M).
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] B
  124: *> \verbatim
  125: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
  126: *>          On entry, the P-by-N matrix B.
  127: *>          On exit, B contains the triangular matrix described in
  128: *>          the Purpose section.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDB
  132: *> \verbatim
  133: *>          LDB is INTEGER
  134: *>          The leading dimension of the array B. LDB >= max(1,P).
  135: *> \endverbatim
  136: *>
  137: *> \param[in] TOLA
  138: *> \verbatim
  139: *>          TOLA is DOUBLE PRECISION
  140: *> \endverbatim
  141: *>
  142: *> \param[in] TOLB
  143: *> \verbatim
  144: *>          TOLB is DOUBLE PRECISION
  145: *>
  146: *>          TOLA and TOLB are the thresholds to determine the effective
  147: *>          numerical rank of matrix B and a subblock of A. Generally,
  148: *>          they are set to
  149: *>             TOLA = MAX(M,N)*norm(A)*MACHEPS,
  150: *>             TOLB = MAX(P,N)*norm(B)*MACHEPS.
  151: *>          The size of TOLA and TOLB may affect the size of backward
  152: *>          errors of the decomposition.
  153: *> \endverbatim
  154: *>
  155: *> \param[out] K
  156: *> \verbatim
  157: *>          K is INTEGER
  158: *> \endverbatim
  159: *>
  160: *> \param[out] L
  161: *> \verbatim
  162: *>          L is INTEGER
  163: *>
  164: *>          On exit, K and L specify the dimension of the subblocks
  165: *>          described in Purpose section.
  166: *>          K + L = effective numerical rank of (A**T,B**T)**T.
  167: *> \endverbatim
  168: *>
  169: *> \param[out] U
  170: *> \verbatim
  171: *>          U is DOUBLE PRECISION array, dimension (LDU,M)
  172: *>          If JOBU = 'U', U contains the orthogonal matrix U.
  173: *>          If JOBU = 'N', U is not referenced.
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDU
  177: *> \verbatim
  178: *>          LDU is INTEGER
  179: *>          The leading dimension of the array U. LDU >= max(1,M) if
  180: *>          JOBU = 'U'; LDU >= 1 otherwise.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] V
  184: *> \verbatim
  185: *>          V is DOUBLE PRECISION array, dimension (LDV,P)
  186: *>          If JOBV = 'V', V contains the orthogonal matrix V.
  187: *>          If JOBV = 'N', V is not referenced.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] LDV
  191: *> \verbatim
  192: *>          LDV is INTEGER
  193: *>          The leading dimension of the array V. LDV >= max(1,P) if
  194: *>          JOBV = 'V'; LDV >= 1 otherwise.
  195: *> \endverbatim
  196: *>
  197: *> \param[out] Q
  198: *> \verbatim
  199: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
  200: *>          If JOBQ = 'Q', Q contains the orthogonal matrix Q.
  201: *>          If JOBQ = 'N', Q is not referenced.
  202: *> \endverbatim
  203: *>
  204: *> \param[in] LDQ
  205: *> \verbatim
  206: *>          LDQ is INTEGER
  207: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
  208: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
  209: *> \endverbatim
  210: *>
  211: *> \param[out] IWORK
  212: *> \verbatim
  213: *>          IWORK is INTEGER array, dimension (N)
  214: *> \endverbatim
  215: *>
  216: *> \param[out] TAU
  217: *> \verbatim
  218: *>          TAU is DOUBLE PRECISION array, dimension (N)
  219: *> \endverbatim
  220: *>
  221: *> \param[out] WORK
  222: *> \verbatim
  223: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  224: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  225: *> \endverbatim
  226: *>
  227: *> \param[in] LWORK
  228: *> \verbatim
  229: *>          LWORK is INTEGER
  230: *>          The dimension of the array WORK.
  231: *>
  232: *>          If LWORK = -1, then a workspace query is assumed; the routine
  233: *>          only calculates the optimal size of the WORK array, returns
  234: *>          this value as the first entry of the WORK array, and no error
  235: *>          message related to LWORK is issued by XERBLA.
  236: *> \endverbatim
  237: *>
  238: *> \param[out] INFO
  239: *> \verbatim
  240: *>          INFO is INTEGER
  241: *>          = 0:  successful exit
  242: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  243: *> \endverbatim
  244: *
  245: *  Authors:
  246: *  ========
  247: *
  248: *> \author Univ. of Tennessee
  249: *> \author Univ. of California Berkeley
  250: *> \author Univ. of Colorado Denver
  251: *> \author NAG Ltd.
  252: *
  253: *> \ingroup doubleOTHERcomputational
  254: *
  255: *> \par Further Details:
  256: *  =====================
  257: *>
  258: *> \verbatim
  259: *>
  260: *>  The subroutine uses LAPACK subroutine DGEQP3 for the QR factorization
  261: *>  with column pivoting to detect the effective numerical rank of the
  262: *>  a matrix. It may be replaced by a better rank determination strategy.
  263: *>
  264: *>  DGGSVP3 replaces the deprecated subroutine DGGSVP.
  265: *>
  266: *> \endverbatim
  267: *>
  268: *  =====================================================================
  269:       SUBROUTINE DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
  270:      $                    TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
  271:      $                    IWORK, TAU, WORK, LWORK, INFO )
  272: *
  273: *  -- LAPACK computational routine --
  274: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  275: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  276: *
  277:       IMPLICIT NONE
  278: *
  279: *     .. Scalar Arguments ..
  280:       CHARACTER          JOBQ, JOBU, JOBV
  281:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
  282:      $                   LWORK
  283:       DOUBLE PRECISION   TOLA, TOLB
  284: *     ..
  285: *     .. Array Arguments ..
  286:       INTEGER            IWORK( * )
  287:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  288:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
  289: *     ..
  290: *
  291: *  =====================================================================
  292: *
  293: *     .. Parameters ..
  294:       DOUBLE PRECISION   ZERO, ONE
  295:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  296: *     ..
  297: *     .. Local Scalars ..
  298:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV, LQUERY
  299:       INTEGER            I, J, LWKOPT
  300: *     ..
  301: *     .. External Functions ..
  302:       LOGICAL            LSAME
  303:       EXTERNAL           LSAME
  304: *     ..
  305: *     .. External Subroutines ..
  306:       EXTERNAL           DGEQP3, DGEQR2, DGERQ2, DLACPY, DLAPMT,
  307:      $                   DLASET, DORG2R, DORM2R, DORMR2, XERBLA
  308: *     ..
  309: *     .. Intrinsic Functions ..
  310:       INTRINSIC          ABS, MAX, MIN
  311: *     ..
  312: *     .. Executable Statements ..
  313: *
  314: *     Test the input parameters
  315: *
  316:       WANTU = LSAME( JOBU, 'U' )
  317:       WANTV = LSAME( JOBV, 'V' )
  318:       WANTQ = LSAME( JOBQ, 'Q' )
  319:       FORWRD = .TRUE.
  320:       LQUERY = ( LWORK.EQ.-1 )
  321:       LWKOPT = 1
  322: *
  323: *     Test the input arguments
  324: *
  325:       INFO = 0
  326:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  327:          INFO = -1
  328:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  329:          INFO = -2
  330:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  331:          INFO = -3
  332:       ELSE IF( M.LT.0 ) THEN
  333:          INFO = -4
  334:       ELSE IF( P.LT.0 ) THEN
  335:          INFO = -5
  336:       ELSE IF( N.LT.0 ) THEN
  337:          INFO = -6
  338:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  339:          INFO = -8
  340:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  341:          INFO = -10
  342:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  343:          INFO = -16
  344:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  345:          INFO = -18
  346:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  347:          INFO = -20
  348:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  349:          INFO = -24
  350:       END IF
  351: *
  352: *     Compute workspace
  353: *
  354:       IF( INFO.EQ.0 ) THEN
  355:          CALL DGEQP3( P, N, B, LDB, IWORK, TAU, WORK, -1, INFO )
  356:          LWKOPT = INT( WORK ( 1 ) )
  357:          IF( WANTV ) THEN
  358:             LWKOPT = MAX( LWKOPT, P )
  359:          END IF
  360:          LWKOPT = MAX( LWKOPT, MIN( N, P ) )
  361:          LWKOPT = MAX( LWKOPT, M )
  362:          IF( WANTQ ) THEN
  363:             LWKOPT = MAX( LWKOPT, N )
  364:          END IF
  365:          CALL DGEQP3( M, N, A, LDA, IWORK, TAU, WORK, -1, INFO )
  366:          LWKOPT = MAX( LWKOPT, INT( WORK ( 1 ) ) )
  367:          LWKOPT = MAX( 1, LWKOPT )
  368:          WORK( 1 ) = DBLE( LWKOPT )
  369:       END IF
  370: *
  371:       IF( INFO.NE.0 ) THEN
  372:          CALL XERBLA( 'DGGSVP3', -INFO )
  373:          RETURN
  374:       END IF
  375:       IF( LQUERY ) THEN
  376:          RETURN
  377:       ENDIF
  378: *
  379: *     QR with column pivoting of B: B*P = V*( S11 S12 )
  380: *                                           (  0   0  )
  381: *
  382:       DO 10 I = 1, N
  383:          IWORK( I ) = 0
  384:    10 CONTINUE
  385:       CALL DGEQP3( P, N, B, LDB, IWORK, TAU, WORK, LWORK, INFO )
  386: *
  387: *     Update A := A*P
  388: *
  389:       CALL DLAPMT( FORWRD, M, N, A, LDA, IWORK )
  390: *
  391: *     Determine the effective rank of matrix B.
  392: *
  393:       L = 0
  394:       DO 20 I = 1, MIN( P, N )
  395:          IF( ABS( B( I, I ) ).GT.TOLB )
  396:      $      L = L + 1
  397:    20 CONTINUE
  398: *
  399:       IF( WANTV ) THEN
  400: *
  401: *        Copy the details of V, and form V.
  402: *
  403:          CALL DLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
  404:          IF( P.GT.1 )
  405:      $      CALL DLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  406:      $                   LDV )
  407:          CALL DORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  408:       END IF
  409: *
  410: *     Clean up B
  411: *
  412:       DO 40 J = 1, L - 1
  413:          DO 30 I = J + 1, L
  414:             B( I, J ) = ZERO
  415:    30    CONTINUE
  416:    40 CONTINUE
  417:       IF( P.GT.L )
  418:      $   CALL DLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
  419: *
  420:       IF( WANTQ ) THEN
  421: *
  422: *        Set Q = I and Update Q := Q*P
  423: *
  424:          CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  425:          CALL DLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  426:       END IF
  427: *
  428:       IF( P.GE.L .AND. N.NE.L ) THEN
  429: *
  430: *        RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
  431: *
  432:          CALL DGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  433: *
  434: *        Update A := A*Z**T
  435: *
  436:          CALL DORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
  437:      $                LDA, WORK, INFO )
  438: *
  439:          IF( WANTQ ) THEN
  440: *
  441: *           Update Q := Q*Z**T
  442: *
  443:             CALL DORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
  444:      $                   LDQ, WORK, INFO )
  445:          END IF
  446: *
  447: *        Clean up B
  448: *
  449:          CALL DLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
  450:          DO 60 J = N - L + 1, N
  451:             DO 50 I = J - N + L + 1, L
  452:                B( I, J ) = ZERO
  453:    50       CONTINUE
  454:    60    CONTINUE
  455: *
  456:       END IF
  457: *
  458: *     Let              N-L     L
  459: *                A = ( A11    A12 ) M,
  460: *
  461: *     then the following does the complete QR decomposition of A11:
  462: *
  463: *              A11 = U*(  0  T12 )*P1**T
  464: *                      (  0   0  )
  465: *
  466:       DO 70 I = 1, N - L
  467:          IWORK( I ) = 0
  468:    70 CONTINUE
  469:       CALL DGEQP3( M, N-L, A, LDA, IWORK, TAU, WORK, LWORK, INFO )
  470: *
  471: *     Determine the effective rank of A11
  472: *
  473:       K = 0
  474:       DO 80 I = 1, MIN( M, N-L )
  475:          IF( ABS( A( I, I ) ).GT.TOLA )
  476:      $      K = K + 1
  477:    80 CONTINUE
  478: *
  479: *     Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
  480: *
  481:       CALL DORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
  482:      $             TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  483: *
  484:       IF( WANTU ) THEN
  485: *
  486: *        Copy the details of U, and form U
  487: *
  488:          CALL DLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
  489:          IF( M.GT.1 )
  490:      $      CALL DLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  491:      $                   LDU )
  492:          CALL DORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  493:       END IF
  494: *
  495:       IF( WANTQ ) THEN
  496: *
  497: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
  498: *
  499:          CALL DLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  500:       END IF
  501: *
  502: *     Clean up A: set the strictly lower triangular part of
  503: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  504: *
  505:       DO 100 J = 1, K - 1
  506:          DO 90 I = J + 1, K
  507:             A( I, J ) = ZERO
  508:    90    CONTINUE
  509:   100 CONTINUE
  510:       IF( M.GT.K )
  511:      $   CALL DLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
  512: *
  513:       IF( N-L.GT.K ) THEN
  514: *
  515: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  516: *
  517:          CALL DGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  518: *
  519:          IF( WANTQ ) THEN
  520: *
  521: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
  522: *
  523:             CALL DORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
  524:      $                   Q, LDQ, WORK, INFO )
  525:          END IF
  526: *
  527: *        Clean up A
  528: *
  529:          CALL DLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
  530:          DO 120 J = N - L - K + 1, N - L
  531:             DO 110 I = J - N + L + K + 1, K
  532:                A( I, J ) = ZERO
  533:   110       CONTINUE
  534:   120    CONTINUE
  535: *
  536:       END IF
  537: *
  538:       IF( M.GT.K ) THEN
  539: *
  540: *        QR factorization of A( K+1:M,N-L+1:N )
  541: *
  542:          CALL DGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  543: *
  544:          IF( WANTU ) THEN
  545: *
  546: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
  547: *
  548:             CALL DORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  549:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  550:      $                   WORK, INFO )
  551:          END IF
  552: *
  553: *        Clean up
  554: *
  555:          DO 140 J = N - L + 1, N
  556:             DO 130 I = J - N + K + L + 1, M
  557:                A( I, J ) = ZERO
  558:   130       CONTINUE
  559:   140    CONTINUE
  560: *
  561:       END IF
  562: *
  563:       WORK( 1 ) = DBLE( LWKOPT )
  564:       RETURN
  565: *
  566: *     End of DGGSVP3
  567: *
  568:       END

CVSweb interface <joel.bertrand@systella.fr>