File:  [local] / rpl / lapack / lapack / dggsvp.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:05 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
    2:      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
    3:      $                   IWORK, TAU, WORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.3.1) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *  -- April 2011                                                      --
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBQ, JOBU, JOBV
   12:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
   13:       DOUBLE PRECISION   TOLA, TOLB
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   18:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DGGSVP computes orthogonal matrices U, V and Q such that
   25: *
   26: *                     N-K-L  K    L
   27: *   U**T*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
   28: *                  L ( 0     0   A23 )
   29: *              M-K-L ( 0     0    0  )
   30: *
   31: *                   N-K-L  K    L
   32: *          =     K ( 0    A12  A13 )  if M-K-L < 0;
   33: *              M-K ( 0     0   A23 )
   34: *
   35: *                   N-K-L  K    L
   36: *   V**T*B*Q =   L ( 0     0   B13 )
   37: *              P-L ( 0     0    0  )
   38: *
   39: *  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
   40: *  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
   41: *  otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
   42: *  numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. 
   43: *
   44: *  This decomposition is the preprocessing step for computing the
   45: *  Generalized Singular Value Decomposition (GSVD), see subroutine
   46: *  DGGSVD.
   47: *
   48: *  Arguments
   49: *  =========
   50: *
   51: *  JOBU    (input) CHARACTER*1
   52: *          = 'U':  Orthogonal matrix U is computed;
   53: *          = 'N':  U is not computed.
   54: *
   55: *  JOBV    (input) CHARACTER*1
   56: *          = 'V':  Orthogonal matrix V is computed;
   57: *          = 'N':  V is not computed.
   58: *
   59: *  JOBQ    (input) CHARACTER*1
   60: *          = 'Q':  Orthogonal matrix Q is computed;
   61: *          = 'N':  Q is not computed.
   62: *
   63: *  M       (input) INTEGER
   64: *          The number of rows of the matrix A.  M >= 0.
   65: *
   66: *  P       (input) INTEGER
   67: *          The number of rows of the matrix B.  P >= 0.
   68: *
   69: *  N       (input) INTEGER
   70: *          The number of columns of the matrices A and B.  N >= 0.
   71: *
   72: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   73: *          On entry, the M-by-N matrix A.
   74: *          On exit, A contains the triangular (or trapezoidal) matrix
   75: *          described in the Purpose section.
   76: *
   77: *  LDA     (input) INTEGER
   78: *          The leading dimension of the array A. LDA >= max(1,M).
   79: *
   80: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
   81: *          On entry, the P-by-N matrix B.
   82: *          On exit, B contains the triangular matrix described in
   83: *          the Purpose section.
   84: *
   85: *  LDB     (input) INTEGER
   86: *          The leading dimension of the array B. LDB >= max(1,P).
   87: *
   88: *  TOLA    (input) DOUBLE PRECISION
   89: *  TOLB    (input) DOUBLE PRECISION
   90: *          TOLA and TOLB are the thresholds to determine the effective
   91: *          numerical rank of matrix B and a subblock of A. Generally,
   92: *          they are set to
   93: *             TOLA = MAX(M,N)*norm(A)*MAZHEPS,
   94: *             TOLB = MAX(P,N)*norm(B)*MAZHEPS.
   95: *          The size of TOLA and TOLB may affect the size of backward
   96: *          errors of the decomposition.
   97: *
   98: *  K       (output) INTEGER
   99: *  L       (output) INTEGER
  100: *          On exit, K and L specify the dimension of the subblocks
  101: *          described in Purpose section.
  102: *          K + L = effective numerical rank of (A**T,B**T)**T.
  103: *
  104: *  U       (output) DOUBLE PRECISION array, dimension (LDU,M)
  105: *          If JOBU = 'U', U contains the orthogonal matrix U.
  106: *          If JOBU = 'N', U is not referenced.
  107: *
  108: *  LDU     (input) INTEGER
  109: *          The leading dimension of the array U. LDU >= max(1,M) if
  110: *          JOBU = 'U'; LDU >= 1 otherwise.
  111: *
  112: *  V       (output) DOUBLE PRECISION array, dimension (LDV,P)
  113: *          If JOBV = 'V', V contains the orthogonal matrix V.
  114: *          If JOBV = 'N', V is not referenced.
  115: *
  116: *  LDV     (input) INTEGER
  117: *          The leading dimension of the array V. LDV >= max(1,P) if
  118: *          JOBV = 'V'; LDV >= 1 otherwise.
  119: *
  120: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
  121: *          If JOBQ = 'Q', Q contains the orthogonal matrix Q.
  122: *          If JOBQ = 'N', Q is not referenced.
  123: *
  124: *  LDQ     (input) INTEGER
  125: *          The leading dimension of the array Q. LDQ >= max(1,N) if
  126: *          JOBQ = 'Q'; LDQ >= 1 otherwise.
  127: *
  128: *  IWORK   (workspace) INTEGER array, dimension (N)
  129: *
  130: *  TAU     (workspace) DOUBLE PRECISION array, dimension (N)
  131: *
  132: *  WORK    (workspace) DOUBLE PRECISION array, dimension (max(3*N,M,P))
  133: *
  134: *  INFO    (output) INTEGER
  135: *          = 0:  successful exit
  136: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  137: *
  138: *
  139: *  Further Details
  140: *  ===============
  141: *
  142: *  The subroutine uses LAPACK subroutine DGEQPF for the QR factorization
  143: *  with column pivoting to detect the effective numerical rank of the
  144: *  a matrix. It may be replaced by a better rank determination strategy.
  145: *
  146: *  =====================================================================
  147: *
  148: *     .. Parameters ..
  149:       DOUBLE PRECISION   ZERO, ONE
  150:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  151: *     ..
  152: *     .. Local Scalars ..
  153:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
  154:       INTEGER            I, J
  155: *     ..
  156: *     .. External Functions ..
  157:       LOGICAL            LSAME
  158:       EXTERNAL           LSAME
  159: *     ..
  160: *     .. External Subroutines ..
  161:       EXTERNAL           DGEQPF, DGEQR2, DGERQ2, DLACPY, DLAPMT, DLASET,
  162:      $                   DORG2R, DORM2R, DORMR2, XERBLA
  163: *     ..
  164: *     .. Intrinsic Functions ..
  165:       INTRINSIC          ABS, MAX, MIN
  166: *     ..
  167: *     .. Executable Statements ..
  168: *
  169: *     Test the input parameters
  170: *
  171:       WANTU = LSAME( JOBU, 'U' )
  172:       WANTV = LSAME( JOBV, 'V' )
  173:       WANTQ = LSAME( JOBQ, 'Q' )
  174:       FORWRD = .TRUE.
  175: *
  176:       INFO = 0
  177:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  178:          INFO = -1
  179:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  180:          INFO = -2
  181:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  182:          INFO = -3
  183:       ELSE IF( M.LT.0 ) THEN
  184:          INFO = -4
  185:       ELSE IF( P.LT.0 ) THEN
  186:          INFO = -5
  187:       ELSE IF( N.LT.0 ) THEN
  188:          INFO = -6
  189:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  190:          INFO = -8
  191:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  192:          INFO = -10
  193:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  194:          INFO = -16
  195:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  196:          INFO = -18
  197:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  198:          INFO = -20
  199:       END IF
  200:       IF( INFO.NE.0 ) THEN
  201:          CALL XERBLA( 'DGGSVP', -INFO )
  202:          RETURN
  203:       END IF
  204: *
  205: *     QR with column pivoting of B: B*P = V*( S11 S12 )
  206: *                                           (  0   0  )
  207: *
  208:       DO 10 I = 1, N
  209:          IWORK( I ) = 0
  210:    10 CONTINUE
  211:       CALL DGEQPF( P, N, B, LDB, IWORK, TAU, WORK, INFO )
  212: *
  213: *     Update A := A*P
  214: *
  215:       CALL DLAPMT( FORWRD, M, N, A, LDA, IWORK )
  216: *
  217: *     Determine the effective rank of matrix B.
  218: *
  219:       L = 0
  220:       DO 20 I = 1, MIN( P, N )
  221:          IF( ABS( B( I, I ) ).GT.TOLB )
  222:      $      L = L + 1
  223:    20 CONTINUE
  224: *
  225:       IF( WANTV ) THEN
  226: *
  227: *        Copy the details of V, and form V.
  228: *
  229:          CALL DLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
  230:          IF( P.GT.1 )
  231:      $      CALL DLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
  232:      $                   LDV )
  233:          CALL DORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
  234:       END IF
  235: *
  236: *     Clean up B
  237: *
  238:       DO 40 J = 1, L - 1
  239:          DO 30 I = J + 1, L
  240:             B( I, J ) = ZERO
  241:    30    CONTINUE
  242:    40 CONTINUE
  243:       IF( P.GT.L )
  244:      $   CALL DLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
  245: *
  246:       IF( WANTQ ) THEN
  247: *
  248: *        Set Q = I and Update Q := Q*P
  249: *
  250:          CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  251:          CALL DLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
  252:       END IF
  253: *
  254:       IF( P.GE.L .AND. N.NE.L ) THEN
  255: *
  256: *        RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
  257: *
  258:          CALL DGERQ2( L, N, B, LDB, TAU, WORK, INFO )
  259: *
  260: *        Update A := A*Z**T
  261: *
  262:          CALL DORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
  263:      $                LDA, WORK, INFO )
  264: *
  265:          IF( WANTQ ) THEN
  266: *
  267: *           Update Q := Q*Z**T
  268: *
  269:             CALL DORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
  270:      $                   LDQ, WORK, INFO )
  271:          END IF
  272: *
  273: *        Clean up B
  274: *
  275:          CALL DLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
  276:          DO 60 J = N - L + 1, N
  277:             DO 50 I = J - N + L + 1, L
  278:                B( I, J ) = ZERO
  279:    50       CONTINUE
  280:    60    CONTINUE
  281: *
  282:       END IF
  283: *
  284: *     Let              N-L     L
  285: *                A = ( A11    A12 ) M,
  286: *
  287: *     then the following does the complete QR decomposition of A11:
  288: *
  289: *              A11 = U*(  0  T12 )*P1**T
  290: *                      (  0   0  )
  291: *
  292:       DO 70 I = 1, N - L
  293:          IWORK( I ) = 0
  294:    70 CONTINUE
  295:       CALL DGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, INFO )
  296: *
  297: *     Determine the effective rank of A11
  298: *
  299:       K = 0
  300:       DO 80 I = 1, MIN( M, N-L )
  301:          IF( ABS( A( I, I ) ).GT.TOLA )
  302:      $      K = K + 1
  303:    80 CONTINUE
  304: *
  305: *     Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
  306: *
  307:       CALL DORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
  308:      $             TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
  309: *
  310:       IF( WANTU ) THEN
  311: *
  312: *        Copy the details of U, and form U
  313: *
  314:          CALL DLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
  315:          IF( M.GT.1 )
  316:      $      CALL DLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
  317:      $                   LDU )
  318:          CALL DORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
  319:       END IF
  320: *
  321:       IF( WANTQ ) THEN
  322: *
  323: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
  324: *
  325:          CALL DLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
  326:       END IF
  327: *
  328: *     Clean up A: set the strictly lower triangular part of
  329: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
  330: *
  331:       DO 100 J = 1, K - 1
  332:          DO 90 I = J + 1, K
  333:             A( I, J ) = ZERO
  334:    90    CONTINUE
  335:   100 CONTINUE
  336:       IF( M.GT.K )
  337:      $   CALL DLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
  338: *
  339:       IF( N-L.GT.K ) THEN
  340: *
  341: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
  342: *
  343:          CALL DGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
  344: *
  345:          IF( WANTQ ) THEN
  346: *
  347: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
  348: *
  349:             CALL DORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
  350:      $                   Q, LDQ, WORK, INFO )
  351:          END IF
  352: *
  353: *        Clean up A
  354: *
  355:          CALL DLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
  356:          DO 120 J = N - L - K + 1, N - L
  357:             DO 110 I = J - N + L + K + 1, K
  358:                A( I, J ) = ZERO
  359:   110       CONTINUE
  360:   120    CONTINUE
  361: *
  362:       END IF
  363: *
  364:       IF( M.GT.K ) THEN
  365: *
  366: *        QR factorization of A( K+1:M,N-L+1:N )
  367: *
  368:          CALL DGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
  369: *
  370:          IF( WANTU ) THEN
  371: *
  372: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
  373: *
  374:             CALL DORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
  375:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
  376:      $                   WORK, INFO )
  377:          END IF
  378: *
  379: *        Clean up
  380: *
  381:          DO 140 J = N - L + 1, N
  382:             DO 130 I = J - N + K + L + 1, M
  383:                A( I, J ) = ZERO
  384:   130       CONTINUE
  385:   140    CONTINUE
  386: *
  387:       END IF
  388: *
  389:       RETURN
  390: *
  391: *     End of DGGSVP
  392: *
  393:       END

CVSweb interface <joel.bertrand@systella.fr>