Annotation of rpl/lapack/lapack/dggsvp.f, revision 1.19

1.9       bertrand    1: *> \brief \b DGGSVP
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DGGSVP + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvp.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvp.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvp.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
                     22: *                          TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
                     23: *                          IWORK, TAU, WORK, INFO )
1.16      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBQ, JOBU, JOBV
                     27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                     28: *       DOUBLE PRECISION   TOLA, TOLB
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IWORK( * )
                     32: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     33: *      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
                     34: *       ..
1.16      bertrand   35: *
1.9       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
1.14      bertrand   42: *> This routine is deprecated and has been replaced by routine DGGSVP3.
                     43: *>
1.9       bertrand   44: *> DGGSVP computes orthogonal matrices U, V and Q such that
                     45: *>
                     46: *>                    N-K-L  K    L
                     47: *>  U**T*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
                     48: *>                 L ( 0     0   A23 )
                     49: *>             M-K-L ( 0     0    0  )
                     50: *>
                     51: *>                  N-K-L  K    L
                     52: *>         =     K ( 0    A12  A13 )  if M-K-L < 0;
                     53: *>             M-K ( 0     0   A23 )
                     54: *>
                     55: *>                  N-K-L  K    L
                     56: *>  V**T*B*Q =   L ( 0     0   B13 )
                     57: *>             P-L ( 0     0    0  )
                     58: *>
                     59: *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
                     60: *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
                     61: *> otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
1.16      bertrand   62: *> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
1.9       bertrand   63: *>
                     64: *> This decomposition is the preprocessing step for computing the
                     65: *> Generalized Singular Value Decomposition (GSVD), see subroutine
                     66: *> DGGSVD.
                     67: *> \endverbatim
                     68: *
                     69: *  Arguments:
                     70: *  ==========
                     71: *
                     72: *> \param[in] JOBU
                     73: *> \verbatim
                     74: *>          JOBU is CHARACTER*1
                     75: *>          = 'U':  Orthogonal matrix U is computed;
                     76: *>          = 'N':  U is not computed.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] JOBV
                     80: *> \verbatim
                     81: *>          JOBV is CHARACTER*1
                     82: *>          = 'V':  Orthogonal matrix V is computed;
                     83: *>          = 'N':  V is not computed.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] JOBQ
                     87: *> \verbatim
                     88: *>          JOBQ is CHARACTER*1
                     89: *>          = 'Q':  Orthogonal matrix Q is computed;
                     90: *>          = 'N':  Q is not computed.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] M
                     94: *> \verbatim
                     95: *>          M is INTEGER
                     96: *>          The number of rows of the matrix A.  M >= 0.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] P
                    100: *> \verbatim
                    101: *>          P is INTEGER
                    102: *>          The number of rows of the matrix B.  P >= 0.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] N
                    106: *> \verbatim
                    107: *>          N is INTEGER
                    108: *>          The number of columns of the matrices A and B.  N >= 0.
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in,out] A
                    112: *> \verbatim
                    113: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    114: *>          On entry, the M-by-N matrix A.
                    115: *>          On exit, A contains the triangular (or trapezoidal) matrix
                    116: *>          described in the Purpose section.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] LDA
                    120: *> \verbatim
                    121: *>          LDA is INTEGER
                    122: *>          The leading dimension of the array A. LDA >= max(1,M).
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in,out] B
                    126: *> \verbatim
                    127: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                    128: *>          On entry, the P-by-N matrix B.
                    129: *>          On exit, B contains the triangular matrix described in
                    130: *>          the Purpose section.
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[in] LDB
                    134: *> \verbatim
                    135: *>          LDB is INTEGER
                    136: *>          The leading dimension of the array B. LDB >= max(1,P).
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] TOLA
                    140: *> \verbatim
                    141: *>          TOLA is DOUBLE PRECISION
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in] TOLB
                    145: *> \verbatim
                    146: *>          TOLB is DOUBLE PRECISION
                    147: *>
                    148: *>          TOLA and TOLB are the thresholds to determine the effective
                    149: *>          numerical rank of matrix B and a subblock of A. Generally,
                    150: *>          they are set to
                    151: *>             TOLA = MAX(M,N)*norm(A)*MACHEPS,
                    152: *>             TOLB = MAX(P,N)*norm(B)*MACHEPS.
                    153: *>          The size of TOLA and TOLB may affect the size of backward
                    154: *>          errors of the decomposition.
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] K
                    158: *> \verbatim
                    159: *>          K is INTEGER
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] L
                    163: *> \verbatim
                    164: *>          L is INTEGER
                    165: *>
                    166: *>          On exit, K and L specify the dimension of the subblocks
                    167: *>          described in Purpose section.
                    168: *>          K + L = effective numerical rank of (A**T,B**T)**T.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[out] U
                    172: *> \verbatim
                    173: *>          U is DOUBLE PRECISION array, dimension (LDU,M)
                    174: *>          If JOBU = 'U', U contains the orthogonal matrix U.
                    175: *>          If JOBU = 'N', U is not referenced.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] LDU
                    179: *> \verbatim
                    180: *>          LDU is INTEGER
                    181: *>          The leading dimension of the array U. LDU >= max(1,M) if
                    182: *>          JOBU = 'U'; LDU >= 1 otherwise.
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] V
                    186: *> \verbatim
                    187: *>          V is DOUBLE PRECISION array, dimension (LDV,P)
                    188: *>          If JOBV = 'V', V contains the orthogonal matrix V.
                    189: *>          If JOBV = 'N', V is not referenced.
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[in] LDV
                    193: *> \verbatim
                    194: *>          LDV is INTEGER
                    195: *>          The leading dimension of the array V. LDV >= max(1,P) if
                    196: *>          JOBV = 'V'; LDV >= 1 otherwise.
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[out] Q
                    200: *> \verbatim
                    201: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                    202: *>          If JOBQ = 'Q', Q contains the orthogonal matrix Q.
                    203: *>          If JOBQ = 'N', Q is not referenced.
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[in] LDQ
                    207: *> \verbatim
                    208: *>          LDQ is INTEGER
                    209: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
                    210: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
                    211: *> \endverbatim
                    212: *>
                    213: *> \param[out] IWORK
                    214: *> \verbatim
                    215: *>          IWORK is INTEGER array, dimension (N)
                    216: *> \endverbatim
                    217: *>
                    218: *> \param[out] TAU
                    219: *> \verbatim
                    220: *>          TAU is DOUBLE PRECISION array, dimension (N)
                    221: *> \endverbatim
                    222: *>
                    223: *> \param[out] WORK
                    224: *> \verbatim
                    225: *>          WORK is DOUBLE PRECISION array, dimension (max(3*N,M,P))
                    226: *> \endverbatim
                    227: *>
                    228: *> \param[out] INFO
                    229: *> \verbatim
                    230: *>          INFO is INTEGER
                    231: *>          = 0:  successful exit
                    232: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    233: *> \endverbatim
                    234: *
                    235: *  Authors:
                    236: *  ========
                    237: *
1.16      bertrand  238: *> \author Univ. of Tennessee
                    239: *> \author Univ. of California Berkeley
                    240: *> \author Univ. of Colorado Denver
                    241: *> \author NAG Ltd.
1.9       bertrand  242: *
                    243: *> \ingroup doubleOTHERcomputational
                    244: *
                    245: *> \par Further Details:
                    246: *  =====================
                    247: *>
                    248: *>  The subroutine uses LAPACK subroutine DGEQPF for the QR factorization
                    249: *>  with column pivoting to detect the effective numerical rank of the
                    250: *>  a matrix. It may be replaced by a better rank determination strategy.
                    251: *>
                    252: *  =====================================================================
1.1       bertrand  253:       SUBROUTINE DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
                    254:      $                   TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
                    255:      $                   IWORK, TAU, WORK, INFO )
                    256: *
1.19    ! bertrand  257: *  -- LAPACK computational routine --
1.1       bertrand  258: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    259: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    260: *
                    261: *     .. Scalar Arguments ..
                    262:       CHARACTER          JOBQ, JOBU, JOBV
                    263:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                    264:       DOUBLE PRECISION   TOLA, TOLB
                    265: *     ..
                    266: *     .. Array Arguments ..
                    267:       INTEGER            IWORK( * )
                    268:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                    269:      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
                    270: *     ..
                    271: *
                    272: *  =====================================================================
                    273: *
                    274: *     .. Parameters ..
                    275:       DOUBLE PRECISION   ZERO, ONE
                    276:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    277: *     ..
                    278: *     .. Local Scalars ..
                    279:       LOGICAL            FORWRD, WANTQ, WANTU, WANTV
                    280:       INTEGER            I, J
                    281: *     ..
                    282: *     .. External Functions ..
                    283:       LOGICAL            LSAME
                    284:       EXTERNAL           LSAME
                    285: *     ..
                    286: *     .. External Subroutines ..
                    287:       EXTERNAL           DGEQPF, DGEQR2, DGERQ2, DLACPY, DLAPMT, DLASET,
                    288:      $                   DORG2R, DORM2R, DORMR2, XERBLA
                    289: *     ..
                    290: *     .. Intrinsic Functions ..
                    291:       INTRINSIC          ABS, MAX, MIN
                    292: *     ..
                    293: *     .. Executable Statements ..
                    294: *
                    295: *     Test the input parameters
                    296: *
                    297:       WANTU = LSAME( JOBU, 'U' )
                    298:       WANTV = LSAME( JOBV, 'V' )
                    299:       WANTQ = LSAME( JOBQ, 'Q' )
                    300:       FORWRD = .TRUE.
                    301: *
                    302:       INFO = 0
                    303:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
                    304:          INFO = -1
                    305:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
                    306:          INFO = -2
                    307:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
                    308:          INFO = -3
                    309:       ELSE IF( M.LT.0 ) THEN
                    310:          INFO = -4
                    311:       ELSE IF( P.LT.0 ) THEN
                    312:          INFO = -5
                    313:       ELSE IF( N.LT.0 ) THEN
                    314:          INFO = -6
                    315:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    316:          INFO = -8
                    317:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    318:          INFO = -10
                    319:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
                    320:          INFO = -16
                    321:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
                    322:          INFO = -18
                    323:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    324:          INFO = -20
                    325:       END IF
                    326:       IF( INFO.NE.0 ) THEN
                    327:          CALL XERBLA( 'DGGSVP', -INFO )
                    328:          RETURN
                    329:       END IF
                    330: *
                    331: *     QR with column pivoting of B: B*P = V*( S11 S12 )
                    332: *                                           (  0   0  )
                    333: *
                    334:       DO 10 I = 1, N
                    335:          IWORK( I ) = 0
                    336:    10 CONTINUE
                    337:       CALL DGEQPF( P, N, B, LDB, IWORK, TAU, WORK, INFO )
                    338: *
                    339: *     Update A := A*P
                    340: *
                    341:       CALL DLAPMT( FORWRD, M, N, A, LDA, IWORK )
                    342: *
                    343: *     Determine the effective rank of matrix B.
                    344: *
                    345:       L = 0
                    346:       DO 20 I = 1, MIN( P, N )
                    347:          IF( ABS( B( I, I ) ).GT.TOLB )
                    348:      $      L = L + 1
                    349:    20 CONTINUE
                    350: *
                    351:       IF( WANTV ) THEN
                    352: *
                    353: *        Copy the details of V, and form V.
                    354: *
                    355:          CALL DLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
                    356:          IF( P.GT.1 )
                    357:      $      CALL DLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
                    358:      $                   LDV )
                    359:          CALL DORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
                    360:       END IF
                    361: *
                    362: *     Clean up B
                    363: *
                    364:       DO 40 J = 1, L - 1
                    365:          DO 30 I = J + 1, L
                    366:             B( I, J ) = ZERO
                    367:    30    CONTINUE
                    368:    40 CONTINUE
                    369:       IF( P.GT.L )
                    370:      $   CALL DLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
                    371: *
                    372:       IF( WANTQ ) THEN
                    373: *
                    374: *        Set Q = I and Update Q := Q*P
                    375: *
                    376:          CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
                    377:          CALL DLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
                    378:       END IF
                    379: *
                    380:       IF( P.GE.L .AND. N.NE.L ) THEN
                    381: *
                    382: *        RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
                    383: *
                    384:          CALL DGERQ2( L, N, B, LDB, TAU, WORK, INFO )
                    385: *
1.8       bertrand  386: *        Update A := A*Z**T
1.1       bertrand  387: *
                    388:          CALL DORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
                    389:      $                LDA, WORK, INFO )
                    390: *
                    391:          IF( WANTQ ) THEN
                    392: *
1.8       bertrand  393: *           Update Q := Q*Z**T
1.1       bertrand  394: *
                    395:             CALL DORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
                    396:      $                   LDQ, WORK, INFO )
                    397:          END IF
                    398: *
                    399: *        Clean up B
                    400: *
                    401:          CALL DLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
                    402:          DO 60 J = N - L + 1, N
                    403:             DO 50 I = J - N + L + 1, L
                    404:                B( I, J ) = ZERO
                    405:    50       CONTINUE
                    406:    60    CONTINUE
                    407: *
                    408:       END IF
                    409: *
                    410: *     Let              N-L     L
                    411: *                A = ( A11    A12 ) M,
                    412: *
                    413: *     then the following does the complete QR decomposition of A11:
                    414: *
1.8       bertrand  415: *              A11 = U*(  0  T12 )*P1**T
1.1       bertrand  416: *                      (  0   0  )
                    417: *
                    418:       DO 70 I = 1, N - L
                    419:          IWORK( I ) = 0
                    420:    70 CONTINUE
                    421:       CALL DGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, INFO )
                    422: *
                    423: *     Determine the effective rank of A11
                    424: *
                    425:       K = 0
                    426:       DO 80 I = 1, MIN( M, N-L )
                    427:          IF( ABS( A( I, I ) ).GT.TOLA )
                    428:      $      K = K + 1
                    429:    80 CONTINUE
                    430: *
1.8       bertrand  431: *     Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
1.1       bertrand  432: *
                    433:       CALL DORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
                    434:      $             TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
                    435: *
                    436:       IF( WANTU ) THEN
                    437: *
                    438: *        Copy the details of U, and form U
                    439: *
                    440:          CALL DLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
                    441:          IF( M.GT.1 )
                    442:      $      CALL DLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
                    443:      $                   LDU )
                    444:          CALL DORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
                    445:       END IF
                    446: *
                    447:       IF( WANTQ ) THEN
                    448: *
                    449: *        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1
                    450: *
                    451:          CALL DLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
                    452:       END IF
                    453: *
                    454: *     Clean up A: set the strictly lower triangular part of
                    455: *     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
                    456: *
                    457:       DO 100 J = 1, K - 1
                    458:          DO 90 I = J + 1, K
                    459:             A( I, J ) = ZERO
                    460:    90    CONTINUE
                    461:   100 CONTINUE
                    462:       IF( M.GT.K )
                    463:      $   CALL DLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
                    464: *
                    465:       IF( N-L.GT.K ) THEN
                    466: *
                    467: *        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
                    468: *
                    469:          CALL DGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
                    470: *
                    471:          IF( WANTQ ) THEN
                    472: *
1.8       bertrand  473: *           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
1.1       bertrand  474: *
                    475:             CALL DORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
                    476:      $                   Q, LDQ, WORK, INFO )
                    477:          END IF
                    478: *
                    479: *        Clean up A
                    480: *
                    481:          CALL DLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
                    482:          DO 120 J = N - L - K + 1, N - L
                    483:             DO 110 I = J - N + L + K + 1, K
                    484:                A( I, J ) = ZERO
                    485:   110       CONTINUE
                    486:   120    CONTINUE
                    487: *
                    488:       END IF
                    489: *
                    490:       IF( M.GT.K ) THEN
                    491: *
                    492: *        QR factorization of A( K+1:M,N-L+1:N )
                    493: *
                    494:          CALL DGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
                    495: *
                    496:          IF( WANTU ) THEN
                    497: *
                    498: *           Update U(:,K+1:M) := U(:,K+1:M)*U1
                    499: *
                    500:             CALL DORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
                    501:      $                   A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
                    502:      $                   WORK, INFO )
                    503:          END IF
                    504: *
                    505: *        Clean up
                    506: *
                    507:          DO 140 J = N - L + 1, N
                    508:             DO 130 I = J - N + K + L + 1, M
                    509:                A( I, J ) = ZERO
                    510:   130       CONTINUE
                    511:   140    CONTINUE
                    512: *
                    513:       END IF
                    514: *
                    515:       RETURN
                    516: *
                    517: *     End of DGGSVP
                    518: *
                    519:       END

CVSweb interface <joel.bertrand@systella.fr>