File:  [local] / rpl / lapack / lapack / dggsvd3.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:51 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGGSVD3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvd3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvd3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvd3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
   22: *                           LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
   23: *                           LWORK, IWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBQ, JOBU, JOBV
   27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IWORK( * )
   31: *       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
   32: *      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
   33: *      $                   V( LDV, * ), WORK( * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DGGSVD3 computes the generalized singular value decomposition (GSVD)
   43: *> of an M-by-N real matrix A and P-by-N real matrix B:
   44: *>
   45: *>       U**T*A*Q = D1*( 0 R ),    V**T*B*Q = D2*( 0 R )
   46: *>
   47: *> where U, V and Q are orthogonal matrices.
   48: *> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
   49: *> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
   50: *> D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
   51: *> following structures, respectively:
   52: *>
   53: *> If M-K-L >= 0,
   54: *>
   55: *>                     K  L
   56: *>        D1 =     K ( I  0 )
   57: *>                 L ( 0  C )
   58: *>             M-K-L ( 0  0 )
   59: *>
   60: *>                   K  L
   61: *>        D2 =   L ( 0  S )
   62: *>             P-L ( 0  0 )
   63: *>
   64: *>                 N-K-L  K    L
   65: *>   ( 0 R ) = K (  0   R11  R12 )
   66: *>             L (  0    0   R22 )
   67: *>
   68: *> where
   69: *>
   70: *>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   71: *>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   72: *>   C**2 + S**2 = I.
   73: *>
   74: *>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
   75: *>
   76: *> If M-K-L < 0,
   77: *>
   78: *>                   K M-K K+L-M
   79: *>        D1 =   K ( I  0    0   )
   80: *>             M-K ( 0  C    0   )
   81: *>
   82: *>                     K M-K K+L-M
   83: *>        D2 =   M-K ( 0  S    0  )
   84: *>             K+L-M ( 0  0    I  )
   85: *>               P-L ( 0  0    0  )
   86: *>
   87: *>                    N-K-L  K   M-K  K+L-M
   88: *>   ( 0 R ) =     K ( 0    R11  R12  R13  )
   89: *>               M-K ( 0     0   R22  R23  )
   90: *>             K+L-M ( 0     0    0   R33  )
   91: *>
   92: *> where
   93: *>
   94: *>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   95: *>   S = diag( BETA(K+1),  ... , BETA(M) ),
   96: *>   C**2 + S**2 = I.
   97: *>
   98: *>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
   99: *>   ( 0  R22 R23 )
  100: *>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
  101: *>
  102: *> The routine computes C, S, R, and optionally the orthogonal
  103: *> transformation matrices U, V and Q.
  104: *>
  105: *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
  106: *> A and B implicitly gives the SVD of A*inv(B):
  107: *>                      A*inv(B) = U*(D1*inv(D2))*V**T.
  108: *> If ( A**T,B**T)**T  has orthonormal columns, then the GSVD of A and B is
  109: *> also equal to the CS decomposition of A and B. Furthermore, the GSVD
  110: *> can be used to derive the solution of the eigenvalue problem:
  111: *>                      A**T*A x = lambda* B**T*B x.
  112: *> In some literature, the GSVD of A and B is presented in the form
  113: *>                  U**T*A*X = ( 0 D1 ),   V**T*B*X = ( 0 D2 )
  114: *> where U and V are orthogonal and X is nonsingular, D1 and D2 are
  115: *> ``diagonal''.  The former GSVD form can be converted to the latter
  116: *> form by taking the nonsingular matrix X as
  117: *>
  118: *>                      X = Q*( I   0    )
  119: *>                            ( 0 inv(R) ).
  120: *> \endverbatim
  121: *
  122: *  Arguments:
  123: *  ==========
  124: *
  125: *> \param[in] JOBU
  126: *> \verbatim
  127: *>          JOBU is CHARACTER*1
  128: *>          = 'U':  Orthogonal matrix U is computed;
  129: *>          = 'N':  U is not computed.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] JOBV
  133: *> \verbatim
  134: *>          JOBV is CHARACTER*1
  135: *>          = 'V':  Orthogonal matrix V is computed;
  136: *>          = 'N':  V is not computed.
  137: *> \endverbatim
  138: *>
  139: *> \param[in] JOBQ
  140: *> \verbatim
  141: *>          JOBQ is CHARACTER*1
  142: *>          = 'Q':  Orthogonal matrix Q is computed;
  143: *>          = 'N':  Q is not computed.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] M
  147: *> \verbatim
  148: *>          M is INTEGER
  149: *>          The number of rows of the matrix A.  M >= 0.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] N
  153: *> \verbatim
  154: *>          N is INTEGER
  155: *>          The number of columns of the matrices A and B.  N >= 0.
  156: *> \endverbatim
  157: *>
  158: *> \param[in] P
  159: *> \verbatim
  160: *>          P is INTEGER
  161: *>          The number of rows of the matrix B.  P >= 0.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] K
  165: *> \verbatim
  166: *>          K is INTEGER
  167: *> \endverbatim
  168: *>
  169: *> \param[out] L
  170: *> \verbatim
  171: *>          L is INTEGER
  172: *>
  173: *>          On exit, K and L specify the dimension of the subblocks
  174: *>          described in Purpose.
  175: *>          K + L = effective numerical rank of (A**T,B**T)**T.
  176: *> \endverbatim
  177: *>
  178: *> \param[in,out] A
  179: *> \verbatim
  180: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  181: *>          On entry, the M-by-N matrix A.
  182: *>          On exit, A contains the triangular matrix R, or part of R.
  183: *>          See Purpose for details.
  184: *> \endverbatim
  185: *>
  186: *> \param[in] LDA
  187: *> \verbatim
  188: *>          LDA is INTEGER
  189: *>          The leading dimension of the array A. LDA >= max(1,M).
  190: *> \endverbatim
  191: *>
  192: *> \param[in,out] B
  193: *> \verbatim
  194: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
  195: *>          On entry, the P-by-N matrix B.
  196: *>          On exit, B contains the triangular matrix R if M-K-L < 0.
  197: *>          See Purpose for details.
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LDB
  201: *> \verbatim
  202: *>          LDB is INTEGER
  203: *>          The leading dimension of the array B. LDB >= max(1,P).
  204: *> \endverbatim
  205: *>
  206: *> \param[out] ALPHA
  207: *> \verbatim
  208: *>          ALPHA is DOUBLE PRECISION array, dimension (N)
  209: *> \endverbatim
  210: *>
  211: *> \param[out] BETA
  212: *> \verbatim
  213: *>          BETA is DOUBLE PRECISION array, dimension (N)
  214: *>
  215: *>          On exit, ALPHA and BETA contain the generalized singular
  216: *>          value pairs of A and B;
  217: *>            ALPHA(1:K) = 1,
  218: *>            BETA(1:K)  = 0,
  219: *>          and if M-K-L >= 0,
  220: *>            ALPHA(K+1:K+L) = C,
  221: *>            BETA(K+1:K+L)  = S,
  222: *>          or if M-K-L < 0,
  223: *>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
  224: *>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
  225: *>          and
  226: *>            ALPHA(K+L+1:N) = 0
  227: *>            BETA(K+L+1:N)  = 0
  228: *> \endverbatim
  229: *>
  230: *> \param[out] U
  231: *> \verbatim
  232: *>          U is DOUBLE PRECISION array, dimension (LDU,M)
  233: *>          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
  234: *>          If JOBU = 'N', U is not referenced.
  235: *> \endverbatim
  236: *>
  237: *> \param[in] LDU
  238: *> \verbatim
  239: *>          LDU is INTEGER
  240: *>          The leading dimension of the array U. LDU >= max(1,M) if
  241: *>          JOBU = 'U'; LDU >= 1 otherwise.
  242: *> \endverbatim
  243: *>
  244: *> \param[out] V
  245: *> \verbatim
  246: *>          V is DOUBLE PRECISION array, dimension (LDV,P)
  247: *>          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
  248: *>          If JOBV = 'N', V is not referenced.
  249: *> \endverbatim
  250: *>
  251: *> \param[in] LDV
  252: *> \verbatim
  253: *>          LDV is INTEGER
  254: *>          The leading dimension of the array V. LDV >= max(1,P) if
  255: *>          JOBV = 'V'; LDV >= 1 otherwise.
  256: *> \endverbatim
  257: *>
  258: *> \param[out] Q
  259: *> \verbatim
  260: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
  261: *>          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
  262: *>          If JOBQ = 'N', Q is not referenced.
  263: *> \endverbatim
  264: *>
  265: *> \param[in] LDQ
  266: *> \verbatim
  267: *>          LDQ is INTEGER
  268: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
  269: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
  270: *> \endverbatim
  271: *>
  272: *> \param[out] WORK
  273: *> \verbatim
  274: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  275: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  276: *> \endverbatim
  277: *>
  278: *> \param[in] LWORK
  279: *> \verbatim
  280: *>          LWORK is INTEGER
  281: *>          The dimension of the array WORK.
  282: *>
  283: *>          If LWORK = -1, then a workspace query is assumed; the routine
  284: *>          only calculates the optimal size of the WORK array, returns
  285: *>          this value as the first entry of the WORK array, and no error
  286: *>          message related to LWORK is issued by XERBLA.
  287: *> \endverbatim
  288: *>
  289: *> \param[out] IWORK
  290: *> \verbatim
  291: *>          IWORK is INTEGER array, dimension (N)
  292: *>          On exit, IWORK stores the sorting information. More
  293: *>          precisely, the following loop will sort ALPHA
  294: *>             for I = K+1, min(M,K+L)
  295: *>                 swap ALPHA(I) and ALPHA(IWORK(I))
  296: *>             endfor
  297: *>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
  298: *> \endverbatim
  299: *>
  300: *> \param[out] INFO
  301: *> \verbatim
  302: *>          INFO is INTEGER
  303: *>          = 0:  successful exit.
  304: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  305: *>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
  306: *>                converge.  For further details, see subroutine DTGSJA.
  307: *> \endverbatim
  308: *
  309: *> \par Internal Parameters:
  310: *  =========================
  311: *>
  312: *> \verbatim
  313: *>  TOLA    DOUBLE PRECISION
  314: *>  TOLB    DOUBLE PRECISION
  315: *>          TOLA and TOLB are the thresholds to determine the effective
  316: *>          rank of (A**T,B**T)**T. Generally, they are set to
  317: *>                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
  318: *>                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
  319: *>          The size of TOLA and TOLB may affect the size of backward
  320: *>          errors of the decomposition.
  321: *> \endverbatim
  322: *
  323: *  Authors:
  324: *  ========
  325: *
  326: *> \author Univ. of Tennessee
  327: *> \author Univ. of California Berkeley
  328: *> \author Univ. of Colorado Denver
  329: *> \author NAG Ltd.
  330: *
  331: *> \ingroup doubleGEsing
  332: *
  333: *> \par Contributors:
  334: *  ==================
  335: *>
  336: *>     Ming Gu and Huan Ren, Computer Science Division, University of
  337: *>     California at Berkeley, USA
  338: *>
  339: *
  340: *> \par Further Details:
  341: *  =====================
  342: *>
  343: *>  DGGSVD3 replaces the deprecated subroutine DGGSVD.
  344: *>
  345: *  =====================================================================
  346:       SUBROUTINE DGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
  347:      $                    LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
  348:      $                    WORK, LWORK, IWORK, INFO )
  349: *
  350: *  -- LAPACK driver routine --
  351: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  352: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  353: *
  354: *     .. Scalar Arguments ..
  355:       CHARACTER          JOBQ, JOBU, JOBV
  356:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
  357:      $                   LWORK
  358: *     ..
  359: *     .. Array Arguments ..
  360:       INTEGER            IWORK( * )
  361:       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
  362:      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
  363:      $                   V( LDV, * ), WORK( * )
  364: *     ..
  365: *
  366: *  =====================================================================
  367: *
  368: *     .. Local Scalars ..
  369:       LOGICAL            WANTQ, WANTU, WANTV, LQUERY
  370:       INTEGER            I, IBND, ISUB, J, NCYCLE, LWKOPT
  371:       DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
  372: *     ..
  373: *     .. External Functions ..
  374:       LOGICAL            LSAME
  375:       DOUBLE PRECISION   DLAMCH, DLANGE
  376:       EXTERNAL           LSAME, DLAMCH, DLANGE
  377: *     ..
  378: *     .. External Subroutines ..
  379:       EXTERNAL           DCOPY, DGGSVP3, DTGSJA, XERBLA
  380: *     ..
  381: *     .. Intrinsic Functions ..
  382:       INTRINSIC          MAX, MIN
  383: *     ..
  384: *     .. Executable Statements ..
  385: *
  386: *     Decode and test the input parameters
  387: *
  388:       WANTU = LSAME( JOBU, 'U' )
  389:       WANTV = LSAME( JOBV, 'V' )
  390:       WANTQ = LSAME( JOBQ, 'Q' )
  391:       LQUERY = ( LWORK.EQ.-1 )
  392:       LWKOPT = 1
  393: *
  394: *     Test the input arguments
  395: *
  396:       INFO = 0
  397:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  398:          INFO = -1
  399:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  400:          INFO = -2
  401:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  402:          INFO = -3
  403:       ELSE IF( M.LT.0 ) THEN
  404:          INFO = -4
  405:       ELSE IF( N.LT.0 ) THEN
  406:          INFO = -5
  407:       ELSE IF( P.LT.0 ) THEN
  408:          INFO = -6
  409:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  410:          INFO = -10
  411:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  412:          INFO = -12
  413:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  414:          INFO = -16
  415:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  416:          INFO = -18
  417:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  418:          INFO = -20
  419:       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  420:          INFO = -24
  421:       END IF
  422: *
  423: *     Compute workspace
  424: *
  425:       IF( INFO.EQ.0 ) THEN
  426:          CALL DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
  427:      $                 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
  428:      $                 WORK, -1, INFO )
  429:          LWKOPT = N + INT( WORK( 1 ) )
  430:          LWKOPT = MAX( 2*N, LWKOPT )
  431:          LWKOPT = MAX( 1, LWKOPT )
  432:          WORK( 1 ) = DBLE( LWKOPT )
  433:       END IF
  434: *
  435:       IF( INFO.NE.0 ) THEN
  436:          CALL XERBLA( 'DGGSVD3', -INFO )
  437:          RETURN
  438:       END IF
  439:       IF( LQUERY ) THEN
  440:          RETURN
  441:       ENDIF
  442: *
  443: *     Compute the Frobenius norm of matrices A and B
  444: *
  445:       ANORM = DLANGE( '1', M, N, A, LDA, WORK )
  446:       BNORM = DLANGE( '1', P, N, B, LDB, WORK )
  447: *
  448: *     Get machine precision and set up threshold for determining
  449: *     the effective numerical rank of the matrices A and B.
  450: *
  451:       ULP = DLAMCH( 'Precision' )
  452:       UNFL = DLAMCH( 'Safe Minimum' )
  453:       TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
  454:       TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
  455: *
  456: *     Preprocessing
  457: *
  458:       CALL DGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
  459:      $              TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
  460:      $              WORK( N+1 ), LWORK-N, INFO )
  461: *
  462: *     Compute the GSVD of two upper "triangular" matrices
  463: *
  464:       CALL DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
  465:      $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
  466:      $             WORK, NCYCLE, INFO )
  467: *
  468: *     Sort the singular values and store the pivot indices in IWORK
  469: *     Copy ALPHA to WORK, then sort ALPHA in WORK
  470: *
  471:       CALL DCOPY( N, ALPHA, 1, WORK, 1 )
  472:       IBND = MIN( L, M-K )
  473:       DO 20 I = 1, IBND
  474: *
  475: *        Scan for largest ALPHA(K+I)
  476: *
  477:          ISUB = I
  478:          SMAX = WORK( K+I )
  479:          DO 10 J = I + 1, IBND
  480:             TEMP = WORK( K+J )
  481:             IF( TEMP.GT.SMAX ) THEN
  482:                ISUB = J
  483:                SMAX = TEMP
  484:             END IF
  485:    10    CONTINUE
  486:          IF( ISUB.NE.I ) THEN
  487:             WORK( K+ISUB ) = WORK( K+I )
  488:             WORK( K+I ) = SMAX
  489:             IWORK( K+I ) = K + ISUB
  490:          ELSE
  491:             IWORK( K+I ) = K + I
  492:          END IF
  493:    20 CONTINUE
  494: *
  495:       WORK( 1 ) = DBLE( LWKOPT )
  496:       RETURN
  497: *
  498: *     End of DGGSVD3
  499: *
  500:       END

CVSweb interface <joel.bertrand@systella.fr>