File:  [local] / rpl / lapack / lapack / dggsvd.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:46 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
    2:      $                   LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
    3:      $                   IWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBQ, JOBU, JOBV
   12:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
   13: *     ..
   14: *     .. Array Arguments ..
   15:       INTEGER            IWORK( * )
   16:       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
   17:      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
   18:      $                   V( LDV, * ), WORK( * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DGGSVD computes the generalized singular value decomposition (GSVD)
   25: *  of an M-by-N real matrix A and P-by-N real matrix B:
   26: *
   27: *      U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R )
   28: *
   29: *  where U, V and Q are orthogonal matrices, and Z' is the transpose
   30: *  of Z.  Let K+L = the effective numerical rank of the matrix (A',B')',
   31: *  then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
   32: *  D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
   33: *  following structures, respectively:
   34: *
   35: *  If M-K-L >= 0,
   36: *
   37: *                      K  L
   38: *         D1 =     K ( I  0 )
   39: *                  L ( 0  C )
   40: *              M-K-L ( 0  0 )
   41: *
   42: *                    K  L
   43: *         D2 =   L ( 0  S )
   44: *              P-L ( 0  0 )
   45: *
   46: *                  N-K-L  K    L
   47: *    ( 0 R ) = K (  0   R11  R12 )
   48: *              L (  0    0   R22 )
   49: *
   50: *  where
   51: *
   52: *    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   53: *    S = diag( BETA(K+1),  ... , BETA(K+L) ),
   54: *    C**2 + S**2 = I.
   55: *
   56: *    R is stored in A(1:K+L,N-K-L+1:N) on exit.
   57: *
   58: *  If M-K-L < 0,
   59: *
   60: *                    K M-K K+L-M
   61: *         D1 =   K ( I  0    0   )
   62: *              M-K ( 0  C    0   )
   63: *
   64: *                      K M-K K+L-M
   65: *         D2 =   M-K ( 0  S    0  )
   66: *              K+L-M ( 0  0    I  )
   67: *                P-L ( 0  0    0  )
   68: *
   69: *                     N-K-L  K   M-K  K+L-M
   70: *    ( 0 R ) =     K ( 0    R11  R12  R13  )
   71: *                M-K ( 0     0   R22  R23  )
   72: *              K+L-M ( 0     0    0   R33  )
   73: *
   74: *  where
   75: *
   76: *    C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   77: *    S = diag( BETA(K+1),  ... , BETA(M) ),
   78: *    C**2 + S**2 = I.
   79: *
   80: *    (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
   81: *    ( 0  R22 R23 )
   82: *    in B(M-K+1:L,N+M-K-L+1:N) on exit.
   83: *
   84: *  The routine computes C, S, R, and optionally the orthogonal
   85: *  transformation matrices U, V and Q.
   86: *
   87: *  In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
   88: *  A and B implicitly gives the SVD of A*inv(B):
   89: *                       A*inv(B) = U*(D1*inv(D2))*V'.
   90: *  If ( A',B')' has orthonormal columns, then the GSVD of A and B is
   91: *  also equal to the CS decomposition of A and B. Furthermore, the GSVD
   92: *  can be used to derive the solution of the eigenvalue problem:
   93: *                       A'*A x = lambda* B'*B x.
   94: *  In some literature, the GSVD of A and B is presented in the form
   95: *                   U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 )
   96: *  where U and V are orthogonal and X is nonsingular, D1 and D2 are
   97: *  ``diagonal''.  The former GSVD form can be converted to the latter
   98: *  form by taking the nonsingular matrix X as
   99: *
  100: *                       X = Q*( I   0    )
  101: *                             ( 0 inv(R) ).
  102: *
  103: *  Arguments
  104: *  =========
  105: *
  106: *  JOBU    (input) CHARACTER*1
  107: *          = 'U':  Orthogonal matrix U is computed;
  108: *          = 'N':  U is not computed.
  109: *
  110: *  JOBV    (input) CHARACTER*1
  111: *          = 'V':  Orthogonal matrix V is computed;
  112: *          = 'N':  V is not computed.
  113: *
  114: *  JOBQ    (input) CHARACTER*1
  115: *          = 'Q':  Orthogonal matrix Q is computed;
  116: *          = 'N':  Q is not computed.
  117: *
  118: *  M       (input) INTEGER
  119: *          The number of rows of the matrix A.  M >= 0.
  120: *
  121: *  N       (input) INTEGER
  122: *          The number of columns of the matrices A and B.  N >= 0.
  123: *
  124: *  P       (input) INTEGER
  125: *          The number of rows of the matrix B.  P >= 0.
  126: *
  127: *  K       (output) INTEGER
  128: *  L       (output) INTEGER
  129: *          On exit, K and L specify the dimension of the subblocks
  130: *          described in the Purpose section.
  131: *          K + L = effective numerical rank of (A',B')'.
  132: *
  133: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
  134: *          On entry, the M-by-N matrix A.
  135: *          On exit, A contains the triangular matrix R, or part of R.
  136: *          See Purpose for details.
  137: *
  138: *  LDA     (input) INTEGER
  139: *          The leading dimension of the array A. LDA >= max(1,M).
  140: *
  141: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
  142: *          On entry, the P-by-N matrix B.
  143: *          On exit, B contains the triangular matrix R if M-K-L < 0.
  144: *          See Purpose for details.
  145: *
  146: *  LDB     (input) INTEGER
  147: *          The leading dimension of the array B. LDB >= max(1,P).
  148: *
  149: *  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
  150: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
  151: *          On exit, ALPHA and BETA contain the generalized singular
  152: *          value pairs of A and B;
  153: *            ALPHA(1:K) = 1,
  154: *            BETA(1:K)  = 0,
  155: *          and if M-K-L >= 0,
  156: *            ALPHA(K+1:K+L) = C,
  157: *            BETA(K+1:K+L)  = S,
  158: *          or if M-K-L < 0,
  159: *            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
  160: *            BETA(K+1:M) =S, BETA(M+1:K+L) =1
  161: *          and
  162: *            ALPHA(K+L+1:N) = 0
  163: *            BETA(K+L+1:N)  = 0
  164: *
  165: *  U       (output) DOUBLE PRECISION array, dimension (LDU,M)
  166: *          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
  167: *          If JOBU = 'N', U is not referenced.
  168: *
  169: *  LDU     (input) INTEGER
  170: *          The leading dimension of the array U. LDU >= max(1,M) if
  171: *          JOBU = 'U'; LDU >= 1 otherwise.
  172: *
  173: *  V       (output) DOUBLE PRECISION array, dimension (LDV,P)
  174: *          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
  175: *          If JOBV = 'N', V is not referenced.
  176: *
  177: *  LDV     (input) INTEGER
  178: *          The leading dimension of the array V. LDV >= max(1,P) if
  179: *          JOBV = 'V'; LDV >= 1 otherwise.
  180: *
  181: *  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
  182: *          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
  183: *          If JOBQ = 'N', Q is not referenced.
  184: *
  185: *  LDQ     (input) INTEGER
  186: *          The leading dimension of the array Q. LDQ >= max(1,N) if
  187: *          JOBQ = 'Q'; LDQ >= 1 otherwise.
  188: *
  189: *  WORK    (workspace) DOUBLE PRECISION array,
  190: *                      dimension (max(3*N,M,P)+N)
  191: *
  192: *  IWORK   (workspace/output) INTEGER array, dimension (N)
  193: *          On exit, IWORK stores the sorting information. More
  194: *          precisely, the following loop will sort ALPHA
  195: *             for I = K+1, min(M,K+L)
  196: *                 swap ALPHA(I) and ALPHA(IWORK(I))
  197: *             endfor
  198: *          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
  199: *
  200: *  INFO    (output) INTEGER
  201: *          = 0:  successful exit
  202: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  203: *          > 0:  if INFO = 1, the Jacobi-type procedure failed to
  204: *                converge.  For further details, see subroutine DTGSJA.
  205: *
  206: *  Internal Parameters
  207: *  ===================
  208: *
  209: *  TOLA    DOUBLE PRECISION
  210: *  TOLB    DOUBLE PRECISION
  211: *          TOLA and TOLB are the thresholds to determine the effective
  212: *          rank of (A',B')'. Generally, they are set to
  213: *                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
  214: *                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
  215: *          The size of TOLA and TOLB may affect the size of backward
  216: *          errors of the decomposition.
  217: *
  218: *  Further Details
  219: *  ===============
  220: *
  221: *  2-96 Based on modifications by
  222: *     Ming Gu and Huan Ren, Computer Science Division, University of
  223: *     California at Berkeley, USA
  224: *
  225: *  =====================================================================
  226: *
  227: *     .. Local Scalars ..
  228:       LOGICAL            WANTQ, WANTU, WANTV
  229:       INTEGER            I, IBND, ISUB, J, NCYCLE
  230:       DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
  231: *     ..
  232: *     .. External Functions ..
  233:       LOGICAL            LSAME
  234:       DOUBLE PRECISION   DLAMCH, DLANGE
  235:       EXTERNAL           LSAME, DLAMCH, DLANGE
  236: *     ..
  237: *     .. External Subroutines ..
  238:       EXTERNAL           DCOPY, DGGSVP, DTGSJA, XERBLA
  239: *     ..
  240: *     .. Intrinsic Functions ..
  241:       INTRINSIC          MAX, MIN
  242: *     ..
  243: *     .. Executable Statements ..
  244: *
  245: *     Test the input parameters
  246: *
  247:       WANTU = LSAME( JOBU, 'U' )
  248:       WANTV = LSAME( JOBV, 'V' )
  249:       WANTQ = LSAME( JOBQ, 'Q' )
  250: *
  251:       INFO = 0
  252:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  253:          INFO = -1
  254:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  255:          INFO = -2
  256:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  257:          INFO = -3
  258:       ELSE IF( M.LT.0 ) THEN
  259:          INFO = -4
  260:       ELSE IF( N.LT.0 ) THEN
  261:          INFO = -5
  262:       ELSE IF( P.LT.0 ) THEN
  263:          INFO = -6
  264:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  265:          INFO = -10
  266:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  267:          INFO = -12
  268:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  269:          INFO = -16
  270:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  271:          INFO = -18
  272:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  273:          INFO = -20
  274:       END IF
  275:       IF( INFO.NE.0 ) THEN
  276:          CALL XERBLA( 'DGGSVD', -INFO )
  277:          RETURN
  278:       END IF
  279: *
  280: *     Compute the Frobenius norm of matrices A and B
  281: *
  282:       ANORM = DLANGE( '1', M, N, A, LDA, WORK )
  283:       BNORM = DLANGE( '1', P, N, B, LDB, WORK )
  284: *
  285: *     Get machine precision and set up threshold for determining
  286: *     the effective numerical rank of the matrices A and B.
  287: *
  288:       ULP = DLAMCH( 'Precision' )
  289:       UNFL = DLAMCH( 'Safe Minimum' )
  290:       TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
  291:       TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
  292: *
  293: *     Preprocessing
  294: *
  295:       CALL DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
  296:      $             TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
  297:      $             WORK( N+1 ), INFO )
  298: *
  299: *     Compute the GSVD of two upper "triangular" matrices
  300: *
  301:       CALL DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
  302:      $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
  303:      $             WORK, NCYCLE, INFO )
  304: *
  305: *     Sort the singular values and store the pivot indices in IWORK
  306: *     Copy ALPHA to WORK, then sort ALPHA in WORK
  307: *
  308:       CALL DCOPY( N, ALPHA, 1, WORK, 1 )
  309:       IBND = MIN( L, M-K )
  310:       DO 20 I = 1, IBND
  311: *
  312: *        Scan for largest ALPHA(K+I)
  313: *
  314:          ISUB = I
  315:          SMAX = WORK( K+I )
  316:          DO 10 J = I + 1, IBND
  317:             TEMP = WORK( K+J )
  318:             IF( TEMP.GT.SMAX ) THEN
  319:                ISUB = J
  320:                SMAX = TEMP
  321:             END IF
  322:    10    CONTINUE
  323:          IF( ISUB.NE.I ) THEN
  324:             WORK( K+ISUB ) = WORK( K+I )
  325:             WORK( K+I ) = SMAX
  326:             IWORK( K+I ) = K + ISUB
  327:          ELSE
  328:             IWORK( K+I ) = K + I
  329:          END IF
  330:    20 CONTINUE
  331: *
  332:       RETURN
  333: *
  334: *     End of DGGSVD
  335: *
  336:       END

CVSweb interface <joel.bertrand@systella.fr>