Annotation of rpl/lapack/lapack/dggsvd.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> DGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGGSVD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
        !            22: *                          LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
        !            23: *                          IWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          JOBQ, JOBU, JOBV
        !            27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       INTEGER            IWORK( * )
        !            31: *       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            32: *      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
        !            33: *      $                   V( LDV, * ), WORK( * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> DGGSVD computes the generalized singular value decomposition (GSVD)
        !            43: *> of an M-by-N real matrix A and P-by-N real matrix B:
        !            44: *>
        !            45: *>       U**T*A*Q = D1*( 0 R ),    V**T*B*Q = D2*( 0 R )
        !            46: *>
        !            47: *> where U, V and Q are orthogonal matrices.
        !            48: *> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
        !            49: *> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
        !            50: *> D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
        !            51: *> following structures, respectively:
        !            52: *>
        !            53: *> If M-K-L >= 0,
        !            54: *>
        !            55: *>                     K  L
        !            56: *>        D1 =     K ( I  0 )
        !            57: *>                 L ( 0  C )
        !            58: *>             M-K-L ( 0  0 )
        !            59: *>
        !            60: *>                   K  L
        !            61: *>        D2 =   L ( 0  S )
        !            62: *>             P-L ( 0  0 )
        !            63: *>
        !            64: *>                 N-K-L  K    L
        !            65: *>   ( 0 R ) = K (  0   R11  R12 )
        !            66: *>             L (  0    0   R22 )
        !            67: *>
        !            68: *> where
        !            69: *>
        !            70: *>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
        !            71: *>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
        !            72: *>   C**2 + S**2 = I.
        !            73: *>
        !            74: *>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
        !            75: *>
        !            76: *> If M-K-L < 0,
        !            77: *>
        !            78: *>                   K M-K K+L-M
        !            79: *>        D1 =   K ( I  0    0   )
        !            80: *>             M-K ( 0  C    0   )
        !            81: *>
        !            82: *>                     K M-K K+L-M
        !            83: *>        D2 =   M-K ( 0  S    0  )
        !            84: *>             K+L-M ( 0  0    I  )
        !            85: *>               P-L ( 0  0    0  )
        !            86: *>
        !            87: *>                    N-K-L  K   M-K  K+L-M
        !            88: *>   ( 0 R ) =     K ( 0    R11  R12  R13  )
        !            89: *>               M-K ( 0     0   R22  R23  )
        !            90: *>             K+L-M ( 0     0    0   R33  )
        !            91: *>
        !            92: *> where
        !            93: *>
        !            94: *>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
        !            95: *>   S = diag( BETA(K+1),  ... , BETA(M) ),
        !            96: *>   C**2 + S**2 = I.
        !            97: *>
        !            98: *>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
        !            99: *>   ( 0  R22 R23 )
        !           100: *>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
        !           101: *>
        !           102: *> The routine computes C, S, R, and optionally the orthogonal
        !           103: *> transformation matrices U, V and Q.
        !           104: *>
        !           105: *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
        !           106: *> A and B implicitly gives the SVD of A*inv(B):
        !           107: *>                      A*inv(B) = U*(D1*inv(D2))*V**T.
        !           108: *> If ( A**T,B**T)**T  has orthonormal columns, then the GSVD of A and B is
        !           109: *> also equal to the CS decomposition of A and B. Furthermore, the GSVD
        !           110: *> can be used to derive the solution of the eigenvalue problem:
        !           111: *>                      A**T*A x = lambda* B**T*B x.
        !           112: *> In some literature, the GSVD of A and B is presented in the form
        !           113: *>                  U**T*A*X = ( 0 D1 ),   V**T*B*X = ( 0 D2 )
        !           114: *> where U and V are orthogonal and X is nonsingular, D1 and D2 are
        !           115: *> ``diagonal''.  The former GSVD form can be converted to the latter
        !           116: *> form by taking the nonsingular matrix X as
        !           117: *>
        !           118: *>                      X = Q*( I   0    )
        !           119: *>                            ( 0 inv(R) ).
        !           120: *> \endverbatim
        !           121: *
        !           122: *  Arguments:
        !           123: *  ==========
        !           124: *
        !           125: *> \param[in] JOBU
        !           126: *> \verbatim
        !           127: *>          JOBU is CHARACTER*1
        !           128: *>          = 'U':  Orthogonal matrix U is computed;
        !           129: *>          = 'N':  U is not computed.
        !           130: *> \endverbatim
        !           131: *>
        !           132: *> \param[in] JOBV
        !           133: *> \verbatim
        !           134: *>          JOBV is CHARACTER*1
        !           135: *>          = 'V':  Orthogonal matrix V is computed;
        !           136: *>          = 'N':  V is not computed.
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[in] JOBQ
        !           140: *> \verbatim
        !           141: *>          JOBQ is CHARACTER*1
        !           142: *>          = 'Q':  Orthogonal matrix Q is computed;
        !           143: *>          = 'N':  Q is not computed.
        !           144: *> \endverbatim
        !           145: *>
        !           146: *> \param[in] M
        !           147: *> \verbatim
        !           148: *>          M is INTEGER
        !           149: *>          The number of rows of the matrix A.  M >= 0.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[in] N
        !           153: *> \verbatim
        !           154: *>          N is INTEGER
        !           155: *>          The number of columns of the matrices A and B.  N >= 0.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[in] P
        !           159: *> \verbatim
        !           160: *>          P is INTEGER
        !           161: *>          The number of rows of the matrix B.  P >= 0.
        !           162: *> \endverbatim
        !           163: *>
        !           164: *> \param[out] K
        !           165: *> \verbatim
        !           166: *>          K is INTEGER
        !           167: *> \endverbatim
        !           168: *>
        !           169: *> \param[out] L
        !           170: *> \verbatim
        !           171: *>          L is INTEGER
        !           172: *>
        !           173: *>          On exit, K and L specify the dimension of the subblocks
        !           174: *>          described in Purpose.
        !           175: *>          K + L = effective numerical rank of (A**T,B**T)**T.
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[in,out] A
        !           179: *> \verbatim
        !           180: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !           181: *>          On entry, the M-by-N matrix A.
        !           182: *>          On exit, A contains the triangular matrix R, or part of R.
        !           183: *>          See Purpose for details.
        !           184: *> \endverbatim
        !           185: *>
        !           186: *> \param[in] LDA
        !           187: *> \verbatim
        !           188: *>          LDA is INTEGER
        !           189: *>          The leading dimension of the array A. LDA >= max(1,M).
        !           190: *> \endverbatim
        !           191: *>
        !           192: *> \param[in,out] B
        !           193: *> \verbatim
        !           194: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
        !           195: *>          On entry, the P-by-N matrix B.
        !           196: *>          On exit, B contains the triangular matrix R if M-K-L < 0.
        !           197: *>          See Purpose for details.
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[in] LDB
        !           201: *> \verbatim
        !           202: *>          LDB is INTEGER
        !           203: *>          The leading dimension of the array B. LDB >= max(1,P).
        !           204: *> \endverbatim
        !           205: *>
        !           206: *> \param[out] ALPHA
        !           207: *> \verbatim
        !           208: *>          ALPHA is DOUBLE PRECISION array, dimension (N)
        !           209: *> \endverbatim
        !           210: *>
        !           211: *> \param[out] BETA
        !           212: *> \verbatim
        !           213: *>          BETA is DOUBLE PRECISION array, dimension (N)
        !           214: *>
        !           215: *>          On exit, ALPHA and BETA contain the generalized singular
        !           216: *>          value pairs of A and B;
        !           217: *>            ALPHA(1:K) = 1,
        !           218: *>            BETA(1:K)  = 0,
        !           219: *>          and if M-K-L >= 0,
        !           220: *>            ALPHA(K+1:K+L) = C,
        !           221: *>            BETA(K+1:K+L)  = S,
        !           222: *>          or if M-K-L < 0,
        !           223: *>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
        !           224: *>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
        !           225: *>          and
        !           226: *>            ALPHA(K+L+1:N) = 0
        !           227: *>            BETA(K+L+1:N)  = 0
        !           228: *> \endverbatim
        !           229: *>
        !           230: *> \param[out] U
        !           231: *> \verbatim
        !           232: *>          U is DOUBLE PRECISION array, dimension (LDU,M)
        !           233: *>          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
        !           234: *>          If JOBU = 'N', U is not referenced.
        !           235: *> \endverbatim
        !           236: *>
        !           237: *> \param[in] LDU
        !           238: *> \verbatim
        !           239: *>          LDU is INTEGER
        !           240: *>          The leading dimension of the array U. LDU >= max(1,M) if
        !           241: *>          JOBU = 'U'; LDU >= 1 otherwise.
        !           242: *> \endverbatim
        !           243: *>
        !           244: *> \param[out] V
        !           245: *> \verbatim
        !           246: *>          V is DOUBLE PRECISION array, dimension (LDV,P)
        !           247: *>          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
        !           248: *>          If JOBV = 'N', V is not referenced.
        !           249: *> \endverbatim
        !           250: *>
        !           251: *> \param[in] LDV
        !           252: *> \verbatim
        !           253: *>          LDV is INTEGER
        !           254: *>          The leading dimension of the array V. LDV >= max(1,P) if
        !           255: *>          JOBV = 'V'; LDV >= 1 otherwise.
        !           256: *> \endverbatim
        !           257: *>
        !           258: *> \param[out] Q
        !           259: *> \verbatim
        !           260: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
        !           261: *>          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
        !           262: *>          If JOBQ = 'N', Q is not referenced.
        !           263: *> \endverbatim
        !           264: *>
        !           265: *> \param[in] LDQ
        !           266: *> \verbatim
        !           267: *>          LDQ is INTEGER
        !           268: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
        !           269: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
        !           270: *> \endverbatim
        !           271: *>
        !           272: *> \param[out] WORK
        !           273: *> \verbatim
        !           274: *>          WORK is DOUBLE PRECISION array,
        !           275: *>                      dimension (max(3*N,M,P)+N)
        !           276: *> \endverbatim
        !           277: *>
        !           278: *> \param[out] IWORK
        !           279: *> \verbatim
        !           280: *>          IWORK is INTEGER array, dimension (N)
        !           281: *>          On exit, IWORK stores the sorting information. More
        !           282: *>          precisely, the following loop will sort ALPHA
        !           283: *>             for I = K+1, min(M,K+L)
        !           284: *>                 swap ALPHA(I) and ALPHA(IWORK(I))
        !           285: *>             endfor
        !           286: *>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
        !           287: *> \endverbatim
        !           288: *>
        !           289: *> \param[out] INFO
        !           290: *> \verbatim
        !           291: *>          INFO is INTEGER
        !           292: *>          = 0:  successful exit
        !           293: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           294: *>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
        !           295: *>                converge.  For further details, see subroutine DTGSJA.
        !           296: *> \endverbatim
        !           297: *
        !           298: *> \par Internal Parameters:
        !           299: *  =========================
        !           300: *>
        !           301: *> \verbatim
        !           302: *>  TOLA    DOUBLE PRECISION
        !           303: *>  TOLB    DOUBLE PRECISION
        !           304: *>          TOLA and TOLB are the thresholds to determine the effective
        !           305: *>          rank of (A',B')**T. Generally, they are set to
        !           306: *>                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
        !           307: *>                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
        !           308: *>          The size of TOLA and TOLB may affect the size of backward
        !           309: *>          errors of the decomposition.
        !           310: *> \endverbatim
        !           311: *
        !           312: *  Authors:
        !           313: *  ========
        !           314: *
        !           315: *> \author Univ. of Tennessee 
        !           316: *> \author Univ. of California Berkeley 
        !           317: *> \author Univ. of Colorado Denver 
        !           318: *> \author NAG Ltd. 
        !           319: *
        !           320: *> \date November 2011
        !           321: *
        !           322: *> \ingroup doubleOTHERsing
        !           323: *
        !           324: *> \par Contributors:
        !           325: *  ==================
        !           326: *>
        !           327: *>     Ming Gu and Huan Ren, Computer Science Division, University of
        !           328: *>     California at Berkeley, USA
        !           329: *>
        !           330: *  =====================================================================
1.1       bertrand  331:       SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
                    332:      $                   LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
                    333:      $                   IWORK, INFO )
                    334: *
1.9     ! bertrand  335: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  336: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    337: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  338: *     November 2011
1.1       bertrand  339: *
                    340: *     .. Scalar Arguments ..
                    341:       CHARACTER          JOBQ, JOBU, JOBV
                    342:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                    343: *     ..
                    344: *     .. Array Arguments ..
                    345:       INTEGER            IWORK( * )
                    346:       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    347:      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
                    348:      $                   V( LDV, * ), WORK( * )
                    349: *     ..
                    350: *
                    351: *  =====================================================================
                    352: *
                    353: *     .. Local Scalars ..
                    354:       LOGICAL            WANTQ, WANTU, WANTV
                    355:       INTEGER            I, IBND, ISUB, J, NCYCLE
                    356:       DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
                    357: *     ..
                    358: *     .. External Functions ..
                    359:       LOGICAL            LSAME
                    360:       DOUBLE PRECISION   DLAMCH, DLANGE
                    361:       EXTERNAL           LSAME, DLAMCH, DLANGE
                    362: *     ..
                    363: *     .. External Subroutines ..
                    364:       EXTERNAL           DCOPY, DGGSVP, DTGSJA, XERBLA
                    365: *     ..
                    366: *     .. Intrinsic Functions ..
                    367:       INTRINSIC          MAX, MIN
                    368: *     ..
                    369: *     .. Executable Statements ..
                    370: *
                    371: *     Test the input parameters
                    372: *
                    373:       WANTU = LSAME( JOBU, 'U' )
                    374:       WANTV = LSAME( JOBV, 'V' )
                    375:       WANTQ = LSAME( JOBQ, 'Q' )
                    376: *
                    377:       INFO = 0
                    378:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
                    379:          INFO = -1
                    380:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
                    381:          INFO = -2
                    382:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
                    383:          INFO = -3
                    384:       ELSE IF( M.LT.0 ) THEN
                    385:          INFO = -4
                    386:       ELSE IF( N.LT.0 ) THEN
                    387:          INFO = -5
                    388:       ELSE IF( P.LT.0 ) THEN
                    389:          INFO = -6
                    390:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    391:          INFO = -10
                    392:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    393:          INFO = -12
                    394:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
                    395:          INFO = -16
                    396:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
                    397:          INFO = -18
                    398:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    399:          INFO = -20
                    400:       END IF
                    401:       IF( INFO.NE.0 ) THEN
                    402:          CALL XERBLA( 'DGGSVD', -INFO )
                    403:          RETURN
                    404:       END IF
                    405: *
                    406: *     Compute the Frobenius norm of matrices A and B
                    407: *
                    408:       ANORM = DLANGE( '1', M, N, A, LDA, WORK )
                    409:       BNORM = DLANGE( '1', P, N, B, LDB, WORK )
                    410: *
                    411: *     Get machine precision and set up threshold for determining
                    412: *     the effective numerical rank of the matrices A and B.
                    413: *
                    414:       ULP = DLAMCH( 'Precision' )
                    415:       UNFL = DLAMCH( 'Safe Minimum' )
                    416:       TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
                    417:       TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
                    418: *
                    419: *     Preprocessing
                    420: *
                    421:       CALL DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
                    422:      $             TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
                    423:      $             WORK( N+1 ), INFO )
                    424: *
                    425: *     Compute the GSVD of two upper "triangular" matrices
                    426: *
                    427:       CALL DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
                    428:      $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
                    429:      $             WORK, NCYCLE, INFO )
                    430: *
                    431: *     Sort the singular values and store the pivot indices in IWORK
                    432: *     Copy ALPHA to WORK, then sort ALPHA in WORK
                    433: *
                    434:       CALL DCOPY( N, ALPHA, 1, WORK, 1 )
                    435:       IBND = MIN( L, M-K )
                    436:       DO 20 I = 1, IBND
                    437: *
                    438: *        Scan for largest ALPHA(K+I)
                    439: *
                    440:          ISUB = I
                    441:          SMAX = WORK( K+I )
                    442:          DO 10 J = I + 1, IBND
                    443:             TEMP = WORK( K+J )
                    444:             IF( TEMP.GT.SMAX ) THEN
                    445:                ISUB = J
                    446:                SMAX = TEMP
                    447:             END IF
                    448:    10    CONTINUE
                    449:          IF( ISUB.NE.I ) THEN
                    450:             WORK( K+ISUB ) = WORK( K+I )
                    451:             WORK( K+I ) = SMAX
                    452:             IWORK( K+I ) = K + ISUB
                    453:          ELSE
                    454:             IWORK( K+I ) = K + I
                    455:          END IF
                    456:    20 CONTINUE
                    457: *
                    458:       RETURN
                    459: *
                    460: *     End of DGGSVD
                    461: *
                    462:       END

CVSweb interface <joel.bertrand@systella.fr>