Annotation of rpl/lapack/lapack/dggsvd.f, revision 1.11

1.9       bertrand    1: *> \brief <b> DGGSVD computes the singular value decomposition (SVD) for OTHER matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGGSVD + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggsvd.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggsvd.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggsvd.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
                     22: *                          LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
                     23: *                          IWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBQ, JOBU, JOBV
                     27: *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IWORK( * )
                     31: *       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     32: *      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
                     33: *      $                   V( LDV, * ), WORK( * )
                     34: *       ..
                     35: *  
                     36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> DGGSVD computes the generalized singular value decomposition (GSVD)
                     43: *> of an M-by-N real matrix A and P-by-N real matrix B:
                     44: *>
                     45: *>       U**T*A*Q = D1*( 0 R ),    V**T*B*Q = D2*( 0 R )
                     46: *>
                     47: *> where U, V and Q are orthogonal matrices.
                     48: *> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
                     49: *> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
                     50: *> D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
                     51: *> following structures, respectively:
                     52: *>
                     53: *> If M-K-L >= 0,
                     54: *>
                     55: *>                     K  L
                     56: *>        D1 =     K ( I  0 )
                     57: *>                 L ( 0  C )
                     58: *>             M-K-L ( 0  0 )
                     59: *>
                     60: *>                   K  L
                     61: *>        D2 =   L ( 0  S )
                     62: *>             P-L ( 0  0 )
                     63: *>
                     64: *>                 N-K-L  K    L
                     65: *>   ( 0 R ) = K (  0   R11  R12 )
                     66: *>             L (  0    0   R22 )
                     67: *>
                     68: *> where
                     69: *>
                     70: *>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
                     71: *>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
                     72: *>   C**2 + S**2 = I.
                     73: *>
                     74: *>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
                     75: *>
                     76: *> If M-K-L < 0,
                     77: *>
                     78: *>                   K M-K K+L-M
                     79: *>        D1 =   K ( I  0    0   )
                     80: *>             M-K ( 0  C    0   )
                     81: *>
                     82: *>                     K M-K K+L-M
                     83: *>        D2 =   M-K ( 0  S    0  )
                     84: *>             K+L-M ( 0  0    I  )
                     85: *>               P-L ( 0  0    0  )
                     86: *>
                     87: *>                    N-K-L  K   M-K  K+L-M
                     88: *>   ( 0 R ) =     K ( 0    R11  R12  R13  )
                     89: *>               M-K ( 0     0   R22  R23  )
                     90: *>             K+L-M ( 0     0    0   R33  )
                     91: *>
                     92: *> where
                     93: *>
                     94: *>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
                     95: *>   S = diag( BETA(K+1),  ... , BETA(M) ),
                     96: *>   C**2 + S**2 = I.
                     97: *>
                     98: *>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
                     99: *>   ( 0  R22 R23 )
                    100: *>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
                    101: *>
                    102: *> The routine computes C, S, R, and optionally the orthogonal
                    103: *> transformation matrices U, V and Q.
                    104: *>
                    105: *> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
                    106: *> A and B implicitly gives the SVD of A*inv(B):
                    107: *>                      A*inv(B) = U*(D1*inv(D2))*V**T.
                    108: *> If ( A**T,B**T)**T  has orthonormal columns, then the GSVD of A and B is
                    109: *> also equal to the CS decomposition of A and B. Furthermore, the GSVD
                    110: *> can be used to derive the solution of the eigenvalue problem:
                    111: *>                      A**T*A x = lambda* B**T*B x.
                    112: *> In some literature, the GSVD of A and B is presented in the form
                    113: *>                  U**T*A*X = ( 0 D1 ),   V**T*B*X = ( 0 D2 )
                    114: *> where U and V are orthogonal and X is nonsingular, D1 and D2 are
                    115: *> ``diagonal''.  The former GSVD form can be converted to the latter
                    116: *> form by taking the nonsingular matrix X as
                    117: *>
                    118: *>                      X = Q*( I   0    )
                    119: *>                            ( 0 inv(R) ).
                    120: *> \endverbatim
                    121: *
                    122: *  Arguments:
                    123: *  ==========
                    124: *
                    125: *> \param[in] JOBU
                    126: *> \verbatim
                    127: *>          JOBU is CHARACTER*1
                    128: *>          = 'U':  Orthogonal matrix U is computed;
                    129: *>          = 'N':  U is not computed.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] JOBV
                    133: *> \verbatim
                    134: *>          JOBV is CHARACTER*1
                    135: *>          = 'V':  Orthogonal matrix V is computed;
                    136: *>          = 'N':  V is not computed.
                    137: *> \endverbatim
                    138: *>
                    139: *> \param[in] JOBQ
                    140: *> \verbatim
                    141: *>          JOBQ is CHARACTER*1
                    142: *>          = 'Q':  Orthogonal matrix Q is computed;
                    143: *>          = 'N':  Q is not computed.
                    144: *> \endverbatim
                    145: *>
                    146: *> \param[in] M
                    147: *> \verbatim
                    148: *>          M is INTEGER
                    149: *>          The number of rows of the matrix A.  M >= 0.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] N
                    153: *> \verbatim
                    154: *>          N is INTEGER
                    155: *>          The number of columns of the matrices A and B.  N >= 0.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] P
                    159: *> \verbatim
                    160: *>          P is INTEGER
                    161: *>          The number of rows of the matrix B.  P >= 0.
                    162: *> \endverbatim
                    163: *>
                    164: *> \param[out] K
                    165: *> \verbatim
                    166: *>          K is INTEGER
                    167: *> \endverbatim
                    168: *>
                    169: *> \param[out] L
                    170: *> \verbatim
                    171: *>          L is INTEGER
                    172: *>
                    173: *>          On exit, K and L specify the dimension of the subblocks
                    174: *>          described in Purpose.
                    175: *>          K + L = effective numerical rank of (A**T,B**T)**T.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in,out] A
                    179: *> \verbatim
                    180: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    181: *>          On entry, the M-by-N matrix A.
                    182: *>          On exit, A contains the triangular matrix R, or part of R.
                    183: *>          See Purpose for details.
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[in] LDA
                    187: *> \verbatim
                    188: *>          LDA is INTEGER
                    189: *>          The leading dimension of the array A. LDA >= max(1,M).
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[in,out] B
                    193: *> \verbatim
                    194: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                    195: *>          On entry, the P-by-N matrix B.
                    196: *>          On exit, B contains the triangular matrix R if M-K-L < 0.
                    197: *>          See Purpose for details.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LDB
                    201: *> \verbatim
                    202: *>          LDB is INTEGER
                    203: *>          The leading dimension of the array B. LDB >= max(1,P).
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[out] ALPHA
                    207: *> \verbatim
                    208: *>          ALPHA is DOUBLE PRECISION array, dimension (N)
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[out] BETA
                    212: *> \verbatim
                    213: *>          BETA is DOUBLE PRECISION array, dimension (N)
                    214: *>
                    215: *>          On exit, ALPHA and BETA contain the generalized singular
                    216: *>          value pairs of A and B;
                    217: *>            ALPHA(1:K) = 1,
                    218: *>            BETA(1:K)  = 0,
                    219: *>          and if M-K-L >= 0,
                    220: *>            ALPHA(K+1:K+L) = C,
                    221: *>            BETA(K+1:K+L)  = S,
                    222: *>          or if M-K-L < 0,
                    223: *>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
                    224: *>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
                    225: *>          and
                    226: *>            ALPHA(K+L+1:N) = 0
                    227: *>            BETA(K+L+1:N)  = 0
                    228: *> \endverbatim
                    229: *>
                    230: *> \param[out] U
                    231: *> \verbatim
                    232: *>          U is DOUBLE PRECISION array, dimension (LDU,M)
                    233: *>          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
                    234: *>          If JOBU = 'N', U is not referenced.
                    235: *> \endverbatim
                    236: *>
                    237: *> \param[in] LDU
                    238: *> \verbatim
                    239: *>          LDU is INTEGER
                    240: *>          The leading dimension of the array U. LDU >= max(1,M) if
                    241: *>          JOBU = 'U'; LDU >= 1 otherwise.
                    242: *> \endverbatim
                    243: *>
                    244: *> \param[out] V
                    245: *> \verbatim
                    246: *>          V is DOUBLE PRECISION array, dimension (LDV,P)
                    247: *>          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
                    248: *>          If JOBV = 'N', V is not referenced.
                    249: *> \endverbatim
                    250: *>
                    251: *> \param[in] LDV
                    252: *> \verbatim
                    253: *>          LDV is INTEGER
                    254: *>          The leading dimension of the array V. LDV >= max(1,P) if
                    255: *>          JOBV = 'V'; LDV >= 1 otherwise.
                    256: *> \endverbatim
                    257: *>
                    258: *> \param[out] Q
                    259: *> \verbatim
                    260: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                    261: *>          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
                    262: *>          If JOBQ = 'N', Q is not referenced.
                    263: *> \endverbatim
                    264: *>
                    265: *> \param[in] LDQ
                    266: *> \verbatim
                    267: *>          LDQ is INTEGER
                    268: *>          The leading dimension of the array Q. LDQ >= max(1,N) if
                    269: *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
                    270: *> \endverbatim
                    271: *>
                    272: *> \param[out] WORK
                    273: *> \verbatim
                    274: *>          WORK is DOUBLE PRECISION array,
                    275: *>                      dimension (max(3*N,M,P)+N)
                    276: *> \endverbatim
                    277: *>
                    278: *> \param[out] IWORK
                    279: *> \verbatim
                    280: *>          IWORK is INTEGER array, dimension (N)
                    281: *>          On exit, IWORK stores the sorting information. More
                    282: *>          precisely, the following loop will sort ALPHA
                    283: *>             for I = K+1, min(M,K+L)
                    284: *>                 swap ALPHA(I) and ALPHA(IWORK(I))
                    285: *>             endfor
                    286: *>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
                    287: *> \endverbatim
                    288: *>
                    289: *> \param[out] INFO
                    290: *> \verbatim
                    291: *>          INFO is INTEGER
                    292: *>          = 0:  successful exit
                    293: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    294: *>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
                    295: *>                converge.  For further details, see subroutine DTGSJA.
                    296: *> \endverbatim
                    297: *
                    298: *> \par Internal Parameters:
                    299: *  =========================
                    300: *>
                    301: *> \verbatim
                    302: *>  TOLA    DOUBLE PRECISION
                    303: *>  TOLB    DOUBLE PRECISION
                    304: *>          TOLA and TOLB are the thresholds to determine the effective
                    305: *>          rank of (A',B')**T. Generally, they are set to
                    306: *>                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
                    307: *>                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
                    308: *>          The size of TOLA and TOLB may affect the size of backward
                    309: *>          errors of the decomposition.
                    310: *> \endverbatim
                    311: *
                    312: *  Authors:
                    313: *  ========
                    314: *
                    315: *> \author Univ. of Tennessee 
                    316: *> \author Univ. of California Berkeley 
                    317: *> \author Univ. of Colorado Denver 
                    318: *> \author NAG Ltd. 
                    319: *
                    320: *> \date November 2011
                    321: *
                    322: *> \ingroup doubleOTHERsing
                    323: *
                    324: *> \par Contributors:
                    325: *  ==================
                    326: *>
                    327: *>     Ming Gu and Huan Ren, Computer Science Division, University of
                    328: *>     California at Berkeley, USA
                    329: *>
                    330: *  =====================================================================
1.1       bertrand  331:       SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
                    332:      $                   LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
                    333:      $                   IWORK, INFO )
                    334: *
1.9       bertrand  335: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  336: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    337: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  338: *     November 2011
1.1       bertrand  339: *
                    340: *     .. Scalar Arguments ..
                    341:       CHARACTER          JOBQ, JOBU, JOBV
                    342:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
                    343: *     ..
                    344: *     .. Array Arguments ..
                    345:       INTEGER            IWORK( * )
                    346:       DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    347:      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
                    348:      $                   V( LDV, * ), WORK( * )
                    349: *     ..
                    350: *
                    351: *  =====================================================================
                    352: *
                    353: *     .. Local Scalars ..
                    354:       LOGICAL            WANTQ, WANTU, WANTV
                    355:       INTEGER            I, IBND, ISUB, J, NCYCLE
                    356:       DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
                    357: *     ..
                    358: *     .. External Functions ..
                    359:       LOGICAL            LSAME
                    360:       DOUBLE PRECISION   DLAMCH, DLANGE
                    361:       EXTERNAL           LSAME, DLAMCH, DLANGE
                    362: *     ..
                    363: *     .. External Subroutines ..
                    364:       EXTERNAL           DCOPY, DGGSVP, DTGSJA, XERBLA
                    365: *     ..
                    366: *     .. Intrinsic Functions ..
                    367:       INTRINSIC          MAX, MIN
                    368: *     ..
                    369: *     .. Executable Statements ..
                    370: *
                    371: *     Test the input parameters
                    372: *
                    373:       WANTU = LSAME( JOBU, 'U' )
                    374:       WANTV = LSAME( JOBV, 'V' )
                    375:       WANTQ = LSAME( JOBQ, 'Q' )
                    376: *
                    377:       INFO = 0
                    378:       IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
                    379:          INFO = -1
                    380:       ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
                    381:          INFO = -2
                    382:       ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
                    383:          INFO = -3
                    384:       ELSE IF( M.LT.0 ) THEN
                    385:          INFO = -4
                    386:       ELSE IF( N.LT.0 ) THEN
                    387:          INFO = -5
                    388:       ELSE IF( P.LT.0 ) THEN
                    389:          INFO = -6
                    390:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    391:          INFO = -10
                    392:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    393:          INFO = -12
                    394:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
                    395:          INFO = -16
                    396:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
                    397:          INFO = -18
                    398:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    399:          INFO = -20
                    400:       END IF
                    401:       IF( INFO.NE.0 ) THEN
                    402:          CALL XERBLA( 'DGGSVD', -INFO )
                    403:          RETURN
                    404:       END IF
                    405: *
                    406: *     Compute the Frobenius norm of matrices A and B
                    407: *
                    408:       ANORM = DLANGE( '1', M, N, A, LDA, WORK )
                    409:       BNORM = DLANGE( '1', P, N, B, LDB, WORK )
                    410: *
                    411: *     Get machine precision and set up threshold for determining
                    412: *     the effective numerical rank of the matrices A and B.
                    413: *
                    414:       ULP = DLAMCH( 'Precision' )
                    415:       UNFL = DLAMCH( 'Safe Minimum' )
                    416:       TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
                    417:       TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
                    418: *
                    419: *     Preprocessing
                    420: *
                    421:       CALL DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
                    422:      $             TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
                    423:      $             WORK( N+1 ), INFO )
                    424: *
                    425: *     Compute the GSVD of two upper "triangular" matrices
                    426: *
                    427:       CALL DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
                    428:      $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
                    429:      $             WORK, NCYCLE, INFO )
                    430: *
                    431: *     Sort the singular values and store the pivot indices in IWORK
                    432: *     Copy ALPHA to WORK, then sort ALPHA in WORK
                    433: *
                    434:       CALL DCOPY( N, ALPHA, 1, WORK, 1 )
                    435:       IBND = MIN( L, M-K )
                    436:       DO 20 I = 1, IBND
                    437: *
                    438: *        Scan for largest ALPHA(K+I)
                    439: *
                    440:          ISUB = I
                    441:          SMAX = WORK( K+I )
                    442:          DO 10 J = I + 1, IBND
                    443:             TEMP = WORK( K+J )
                    444:             IF( TEMP.GT.SMAX ) THEN
                    445:                ISUB = J
                    446:                SMAX = TEMP
                    447:             END IF
                    448:    10    CONTINUE
                    449:          IF( ISUB.NE.I ) THEN
                    450:             WORK( K+ISUB ) = WORK( K+I )
                    451:             WORK( K+I ) = SMAX
                    452:             IWORK( K+I ) = K + ISUB
                    453:          ELSE
                    454:             IWORK( K+I ) = K + I
                    455:          END IF
                    456:    20 CONTINUE
                    457: *
                    458:       RETURN
                    459: *
                    460: *     End of DGGSVD
                    461: *
                    462:       END

CVSweb interface <joel.bertrand@systella.fr>