File:  [local] / rpl / lapack / lapack / dggrqf.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:14 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
    2:      $                   LWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
   14:      $                   WORK( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DGGRQF computes a generalized RQ factorization of an M-by-N matrix A
   21: *  and a P-by-N matrix B:
   22: *
   23: *              A = R*Q,        B = Z*T*Q,
   24: *
   25: *  where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
   26: *  matrix, and R and T assume one of the forms:
   27: *
   28: *  if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N,
   29: *                   N-M  M                           ( R21 ) N
   30: *                                                       N
   31: *
   32: *  where R12 or R21 is upper triangular, and
   33: *
   34: *  if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P,
   35: *                  (  0  ) P-N                         P   N-P
   36: *                     N
   37: *
   38: *  where T11 is upper triangular.
   39: *
   40: *  In particular, if B is square and nonsingular, the GRQ factorization
   41: *  of A and B implicitly gives the RQ factorization of A*inv(B):
   42: *
   43: *               A*inv(B) = (R*inv(T))*Z'
   44: *
   45: *  where inv(B) denotes the inverse of the matrix B, and Z' denotes the
   46: *  transpose of the matrix Z.
   47: *
   48: *  Arguments
   49: *  =========
   50: *
   51: *  M       (input) INTEGER
   52: *          The number of rows of the matrix A.  M >= 0.
   53: *
   54: *  P       (input) INTEGER
   55: *          The number of rows of the matrix B.  P >= 0.
   56: *
   57: *  N       (input) INTEGER
   58: *          The number of columns of the matrices A and B. N >= 0.
   59: *
   60: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   61: *          On entry, the M-by-N matrix A.
   62: *          On exit, if M <= N, the upper triangle of the subarray
   63: *          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
   64: *          if M > N, the elements on and above the (M-N)-th subdiagonal
   65: *          contain the M-by-N upper trapezoidal matrix R; the remaining
   66: *          elements, with the array TAUA, represent the orthogonal
   67: *          matrix Q as a product of elementary reflectors (see Further
   68: *          Details).
   69: *
   70: *  LDA     (input) INTEGER
   71: *          The leading dimension of the array A. LDA >= max(1,M).
   72: *
   73: *  TAUA    (output) DOUBLE PRECISION array, dimension (min(M,N))
   74: *          The scalar factors of the elementary reflectors which
   75: *          represent the orthogonal matrix Q (see Further Details).
   76: *
   77: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
   78: *          On entry, the P-by-N matrix B.
   79: *          On exit, the elements on and above the diagonal of the array
   80: *          contain the min(P,N)-by-N upper trapezoidal matrix T (T is
   81: *          upper triangular if P >= N); the elements below the diagonal,
   82: *          with the array TAUB, represent the orthogonal matrix Z as a
   83: *          product of elementary reflectors (see Further Details).
   84: *
   85: *  LDB     (input) INTEGER
   86: *          The leading dimension of the array B. LDB >= max(1,P).
   87: *
   88: *  TAUB    (output) DOUBLE PRECISION array, dimension (min(P,N))
   89: *          The scalar factors of the elementary reflectors which
   90: *          represent the orthogonal matrix Z (see Further Details).
   91: *
   92: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   93: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   94: *
   95: *  LWORK   (input) INTEGER
   96: *          The dimension of the array WORK. LWORK >= max(1,N,M,P).
   97: *          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
   98: *          where NB1 is the optimal blocksize for the RQ factorization
   99: *          of an M-by-N matrix, NB2 is the optimal blocksize for the
  100: *          QR factorization of a P-by-N matrix, and NB3 is the optimal
  101: *          blocksize for a call of DORMRQ.
  102: *
  103: *          If LWORK = -1, then a workspace query is assumed; the routine
  104: *          only calculates the optimal size of the WORK array, returns
  105: *          this value as the first entry of the WORK array, and no error
  106: *          message related to LWORK is issued by XERBLA.
  107: *
  108: *  INFO    (output) INTEGER
  109: *          = 0:  successful exit
  110: *          < 0:  if INF0= -i, the i-th argument had an illegal value.
  111: *
  112: *  Further Details
  113: *  ===============
  114: *
  115: *  The matrix Q is represented as a product of elementary reflectors
  116: *
  117: *     Q = H(1) H(2) . . . H(k), where k = min(m,n).
  118: *
  119: *  Each H(i) has the form
  120: *
  121: *     H(i) = I - taua * v * v'
  122: *
  123: *  where taua is a real scalar, and v is a real vector with
  124: *  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
  125: *  A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
  126: *  To form Q explicitly, use LAPACK subroutine DORGRQ.
  127: *  To use Q to update another matrix, use LAPACK subroutine DORMRQ.
  128: *
  129: *  The matrix Z is represented as a product of elementary reflectors
  130: *
  131: *     Z = H(1) H(2) . . . H(k), where k = min(p,n).
  132: *
  133: *  Each H(i) has the form
  134: *
  135: *     H(i) = I - taub * v * v'
  136: *
  137: *  where taub is a real scalar, and v is a real vector with
  138: *  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
  139: *  and taub in TAUB(i).
  140: *  To form Z explicitly, use LAPACK subroutine DORGQR.
  141: *  To use Z to update another matrix, use LAPACK subroutine DORMQR.
  142: *
  143: *  =====================================================================
  144: *
  145: *     .. Local Scalars ..
  146:       LOGICAL            LQUERY
  147:       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
  148: *     ..
  149: *     .. External Subroutines ..
  150:       EXTERNAL           DGEQRF, DGERQF, DORMRQ, XERBLA
  151: *     ..
  152: *     .. External Functions ..
  153:       INTEGER            ILAENV
  154:       EXTERNAL           ILAENV
  155: *     ..
  156: *     .. Intrinsic Functions ..
  157:       INTRINSIC          INT, MAX, MIN
  158: *     ..
  159: *     .. Executable Statements ..
  160: *
  161: *     Test the input parameters
  162: *
  163:       INFO = 0
  164:       NB1 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
  165:       NB2 = ILAENV( 1, 'DGEQRF', ' ', P, N, -1, -1 )
  166:       NB3 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
  167:       NB = MAX( NB1, NB2, NB3 )
  168:       LWKOPT = MAX( N, M, P )*NB
  169:       WORK( 1 ) = LWKOPT
  170:       LQUERY = ( LWORK.EQ.-1 )
  171:       IF( M.LT.0 ) THEN
  172:          INFO = -1
  173:       ELSE IF( P.LT.0 ) THEN
  174:          INFO = -2
  175:       ELSE IF( N.LT.0 ) THEN
  176:          INFO = -3
  177:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  178:          INFO = -5
  179:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  180:          INFO = -8
  181:       ELSE IF( LWORK.LT.MAX( 1, M, P, N ) .AND. .NOT.LQUERY ) THEN
  182:          INFO = -11
  183:       END IF
  184:       IF( INFO.NE.0 ) THEN
  185:          CALL XERBLA( 'DGGRQF', -INFO )
  186:          RETURN
  187:       ELSE IF( LQUERY ) THEN
  188:          RETURN
  189:       END IF
  190: *
  191: *     RQ factorization of M-by-N matrix A: A = R*Q
  192: *
  193:       CALL DGERQF( M, N, A, LDA, TAUA, WORK, LWORK, INFO )
  194:       LOPT = WORK( 1 )
  195: *
  196: *     Update B := B*Q'
  197: *
  198:       CALL DORMRQ( 'Right', 'Transpose', P, N, MIN( M, N ),
  199:      $             A( MAX( 1, M-N+1 ), 1 ), LDA, TAUA, B, LDB, WORK,
  200:      $             LWORK, INFO )
  201:       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
  202: *
  203: *     QR factorization of P-by-N matrix B: B = Z*T
  204: *
  205:       CALL DGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO )
  206:       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
  207: *
  208:       RETURN
  209: *
  210: *     End of DGGRQF
  211: *
  212:       END

CVSweb interface <joel.bertrand@systella.fr>