File:  [local] / rpl / lapack / lapack / dggrqf.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:14 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b DGGRQF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGGRQF + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggrqf.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggrqf.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggrqf.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
   22: *                          LWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
   29: *      $                   WORK( * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DGGRQF computes a generalized RQ factorization of an M-by-N matrix A
   39: *> and a P-by-N matrix B:
   40: *>
   41: *>             A = R*Q,        B = Z*T*Q,
   42: *>
   43: *> where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
   44: *> matrix, and R and T assume one of the forms:
   45: *>
   46: *> if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N,
   47: *>                  N-M  M                           ( R21 ) N
   48: *>                                                      N
   49: *>
   50: *> where R12 or R21 is upper triangular, and
   51: *>
   52: *> if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P,
   53: *>                 (  0  ) P-N                         P   N-P
   54: *>                    N
   55: *>
   56: *> where T11 is upper triangular.
   57: *>
   58: *> In particular, if B is square and nonsingular, the GRQ factorization
   59: *> of A and B implicitly gives the RQ factorization of A*inv(B):
   60: *>
   61: *>              A*inv(B) = (R*inv(T))*Z**T
   62: *>
   63: *> where inv(B) denotes the inverse of the matrix B, and Z**T denotes the
   64: *> transpose of the matrix Z.
   65: *> \endverbatim
   66: *
   67: *  Arguments:
   68: *  ==========
   69: *
   70: *> \param[in] M
   71: *> \verbatim
   72: *>          M is INTEGER
   73: *>          The number of rows of the matrix A.  M >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in] P
   77: *> \verbatim
   78: *>          P is INTEGER
   79: *>          The number of rows of the matrix B.  P >= 0.
   80: *> \endverbatim
   81: *>
   82: *> \param[in] N
   83: *> \verbatim
   84: *>          N is INTEGER
   85: *>          The number of columns of the matrices A and B. N >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] A
   89: *> \verbatim
   90: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   91: *>          On entry, the M-by-N matrix A.
   92: *>          On exit, if M <= N, the upper triangle of the subarray
   93: *>          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
   94: *>          if M > N, the elements on and above the (M-N)-th subdiagonal
   95: *>          contain the M-by-N upper trapezoidal matrix R; the remaining
   96: *>          elements, with the array TAUA, represent the orthogonal
   97: *>          matrix Q as a product of elementary reflectors (see Further
   98: *>          Details).
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDA
  102: *> \verbatim
  103: *>          LDA is INTEGER
  104: *>          The leading dimension of the array A. LDA >= max(1,M).
  105: *> \endverbatim
  106: *>
  107: *> \param[out] TAUA
  108: *> \verbatim
  109: *>          TAUA is DOUBLE PRECISION array, dimension (min(M,N))
  110: *>          The scalar factors of the elementary reflectors which
  111: *>          represent the orthogonal matrix Q (see Further Details).
  112: *> \endverbatim
  113: *>
  114: *> \param[in,out] B
  115: *> \verbatim
  116: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
  117: *>          On entry, the P-by-N matrix B.
  118: *>          On exit, the elements on and above the diagonal of the array
  119: *>          contain the min(P,N)-by-N upper trapezoidal matrix T (T is
  120: *>          upper triangular if P >= N); the elements below the diagonal,
  121: *>          with the array TAUB, represent the orthogonal matrix Z as a
  122: *>          product of elementary reflectors (see Further Details).
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDB
  126: *> \verbatim
  127: *>          LDB is INTEGER
  128: *>          The leading dimension of the array B. LDB >= max(1,P).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] TAUB
  132: *> \verbatim
  133: *>          TAUB is DOUBLE PRECISION array, dimension (min(P,N))
  134: *>          The scalar factors of the elementary reflectors which
  135: *>          represent the orthogonal matrix Z (see Further Details).
  136: *> \endverbatim
  137: *>
  138: *> \param[out] WORK
  139: *> \verbatim
  140: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  141: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  142: *> \endverbatim
  143: *>
  144: *> \param[in] LWORK
  145: *> \verbatim
  146: *>          LWORK is INTEGER
  147: *>          The dimension of the array WORK. LWORK >= max(1,N,M,P).
  148: *>          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
  149: *>          where NB1 is the optimal blocksize for the RQ factorization
  150: *>          of an M-by-N matrix, NB2 is the optimal blocksize for the
  151: *>          QR factorization of a P-by-N matrix, and NB3 is the optimal
  152: *>          blocksize for a call of DORMRQ.
  153: *>
  154: *>          If LWORK = -1, then a workspace query is assumed; the routine
  155: *>          only calculates the optimal size of the WORK array, returns
  156: *>          this value as the first entry of the WORK array, and no error
  157: *>          message related to LWORK is issued by XERBLA.
  158: *> \endverbatim
  159: *>
  160: *> \param[out] INFO
  161: *> \verbatim
  162: *>          INFO is INTEGER
  163: *>          = 0:  successful exit
  164: *>          < 0:  if INF0= -i, the i-th argument had an illegal value.
  165: *> \endverbatim
  166: *
  167: *  Authors:
  168: *  ========
  169: *
  170: *> \author Univ. of Tennessee 
  171: *> \author Univ. of California Berkeley 
  172: *> \author Univ. of Colorado Denver 
  173: *> \author NAG Ltd. 
  174: *
  175: *> \date November 2011
  176: *
  177: *> \ingroup doubleOTHERcomputational
  178: *
  179: *> \par Further Details:
  180: *  =====================
  181: *>
  182: *> \verbatim
  183: *>
  184: *>  The matrix Q is represented as a product of elementary reflectors
  185: *>
  186: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
  187: *>
  188: *>  Each H(i) has the form
  189: *>
  190: *>     H(i) = I - taua * v * v**T
  191: *>
  192: *>  where taua is a real scalar, and v is a real vector with
  193: *>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
  194: *>  A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
  195: *>  To form Q explicitly, use LAPACK subroutine DORGRQ.
  196: *>  To use Q to update another matrix, use LAPACK subroutine DORMRQ.
  197: *>
  198: *>  The matrix Z is represented as a product of elementary reflectors
  199: *>
  200: *>     Z = H(1) H(2) . . . H(k), where k = min(p,n).
  201: *>
  202: *>  Each H(i) has the form
  203: *>
  204: *>     H(i) = I - taub * v * v**T
  205: *>
  206: *>  where taub is a real scalar, and v is a real vector with
  207: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
  208: *>  and taub in TAUB(i).
  209: *>  To form Z explicitly, use LAPACK subroutine DORGQR.
  210: *>  To use Z to update another matrix, use LAPACK subroutine DORMQR.
  211: *> \endverbatim
  212: *>
  213: *  =====================================================================
  214:       SUBROUTINE DGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
  215:      $                   LWORK, INFO )
  216: *
  217: *  -- LAPACK computational routine (version 3.4.0) --
  218: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  219: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  220: *     November 2011
  221: *
  222: *     .. Scalar Arguments ..
  223:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
  224: *     ..
  225: *     .. Array Arguments ..
  226:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
  227:      $                   WORK( * )
  228: *     ..
  229: *
  230: *  =====================================================================
  231: *
  232: *     .. Local Scalars ..
  233:       LOGICAL            LQUERY
  234:       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
  235: *     ..
  236: *     .. External Subroutines ..
  237:       EXTERNAL           DGEQRF, DGERQF, DORMRQ, XERBLA
  238: *     ..
  239: *     .. External Functions ..
  240:       INTEGER            ILAENV
  241:       EXTERNAL           ILAENV
  242: *     ..
  243: *     .. Intrinsic Functions ..
  244:       INTRINSIC          INT, MAX, MIN
  245: *     ..
  246: *     .. Executable Statements ..
  247: *
  248: *     Test the input parameters
  249: *
  250:       INFO = 0
  251:       NB1 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
  252:       NB2 = ILAENV( 1, 'DGEQRF', ' ', P, N, -1, -1 )
  253:       NB3 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
  254:       NB = MAX( NB1, NB2, NB3 )
  255:       LWKOPT = MAX( N, M, P )*NB
  256:       WORK( 1 ) = LWKOPT
  257:       LQUERY = ( LWORK.EQ.-1 )
  258:       IF( M.LT.0 ) THEN
  259:          INFO = -1
  260:       ELSE IF( P.LT.0 ) THEN
  261:          INFO = -2
  262:       ELSE IF( N.LT.0 ) THEN
  263:          INFO = -3
  264:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  265:          INFO = -5
  266:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  267:          INFO = -8
  268:       ELSE IF( LWORK.LT.MAX( 1, M, P, N ) .AND. .NOT.LQUERY ) THEN
  269:          INFO = -11
  270:       END IF
  271:       IF( INFO.NE.0 ) THEN
  272:          CALL XERBLA( 'DGGRQF', -INFO )
  273:          RETURN
  274:       ELSE IF( LQUERY ) THEN
  275:          RETURN
  276:       END IF
  277: *
  278: *     RQ factorization of M-by-N matrix A: A = R*Q
  279: *
  280:       CALL DGERQF( M, N, A, LDA, TAUA, WORK, LWORK, INFO )
  281:       LOPT = WORK( 1 )
  282: *
  283: *     Update B := B*Q**T
  284: *
  285:       CALL DORMRQ( 'Right', 'Transpose', P, N, MIN( M, N ),
  286:      $             A( MAX( 1, M-N+1 ), 1 ), LDA, TAUA, B, LDB, WORK,
  287:      $             LWORK, INFO )
  288:       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
  289: *
  290: *     QR factorization of P-by-N matrix B: B = Z*T
  291: *
  292:       CALL DGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO )
  293:       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
  294: *
  295:       RETURN
  296: *
  297: *     End of DGGRQF
  298: *
  299:       END

CVSweb interface <joel.bertrand@systella.fr>