Annotation of rpl/lapack/lapack/dggrqf.f, revision 1.18

1.9       bertrand    1: *> \brief \b DGGRQF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGGRQF + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggrqf.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggrqf.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggrqf.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
                     22: *                          LWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
                     29: *      $                   WORK( * )
                     30: *       ..
1.15      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DGGRQF computes a generalized RQ factorization of an M-by-N matrix A
                     39: *> and a P-by-N matrix B:
                     40: *>
                     41: *>             A = R*Q,        B = Z*T*Q,
                     42: *>
                     43: *> where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
                     44: *> matrix, and R and T assume one of the forms:
                     45: *>
                     46: *> if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N,
                     47: *>                  N-M  M                           ( R21 ) N
                     48: *>                                                      N
                     49: *>
                     50: *> where R12 or R21 is upper triangular, and
                     51: *>
                     52: *> if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P,
                     53: *>                 (  0  ) P-N                         P   N-P
                     54: *>                    N
                     55: *>
                     56: *> where T11 is upper triangular.
                     57: *>
                     58: *> In particular, if B is square and nonsingular, the GRQ factorization
                     59: *> of A and B implicitly gives the RQ factorization of A*inv(B):
                     60: *>
                     61: *>              A*inv(B) = (R*inv(T))*Z**T
                     62: *>
                     63: *> where inv(B) denotes the inverse of the matrix B, and Z**T denotes the
                     64: *> transpose of the matrix Z.
                     65: *> \endverbatim
                     66: *
                     67: *  Arguments:
                     68: *  ==========
                     69: *
                     70: *> \param[in] M
                     71: *> \verbatim
                     72: *>          M is INTEGER
                     73: *>          The number of rows of the matrix A.  M >= 0.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] P
                     77: *> \verbatim
                     78: *>          P is INTEGER
                     79: *>          The number of rows of the matrix B.  P >= 0.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] N
                     83: *> \verbatim
                     84: *>          N is INTEGER
                     85: *>          The number of columns of the matrices A and B. N >= 0.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] A
                     89: *> \verbatim
                     90: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     91: *>          On entry, the M-by-N matrix A.
                     92: *>          On exit, if M <= N, the upper triangle of the subarray
                     93: *>          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
                     94: *>          if M > N, the elements on and above the (M-N)-th subdiagonal
                     95: *>          contain the M-by-N upper trapezoidal matrix R; the remaining
                     96: *>          elements, with the array TAUA, represent the orthogonal
                     97: *>          matrix Q as a product of elementary reflectors (see Further
                     98: *>          Details).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] LDA
                    102: *> \verbatim
                    103: *>          LDA is INTEGER
                    104: *>          The leading dimension of the array A. LDA >= max(1,M).
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[out] TAUA
                    108: *> \verbatim
                    109: *>          TAUA is DOUBLE PRECISION array, dimension (min(M,N))
                    110: *>          The scalar factors of the elementary reflectors which
                    111: *>          represent the orthogonal matrix Q (see Further Details).
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in,out] B
                    115: *> \verbatim
                    116: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                    117: *>          On entry, the P-by-N matrix B.
                    118: *>          On exit, the elements on and above the diagonal of the array
                    119: *>          contain the min(P,N)-by-N upper trapezoidal matrix T (T is
                    120: *>          upper triangular if P >= N); the elements below the diagonal,
                    121: *>          with the array TAUB, represent the orthogonal matrix Z as a
                    122: *>          product of elementary reflectors (see Further Details).
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LDB
                    126: *> \verbatim
                    127: *>          LDB is INTEGER
                    128: *>          The leading dimension of the array B. LDB >= max(1,P).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] TAUB
                    132: *> \verbatim
                    133: *>          TAUB is DOUBLE PRECISION array, dimension (min(P,N))
                    134: *>          The scalar factors of the elementary reflectors which
                    135: *>          represent the orthogonal matrix Z (see Further Details).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] WORK
                    139: *> \verbatim
                    140: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    141: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in] LWORK
                    145: *> \verbatim
                    146: *>          LWORK is INTEGER
                    147: *>          The dimension of the array WORK. LWORK >= max(1,N,M,P).
                    148: *>          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
                    149: *>          where NB1 is the optimal blocksize for the RQ factorization
                    150: *>          of an M-by-N matrix, NB2 is the optimal blocksize for the
                    151: *>          QR factorization of a P-by-N matrix, and NB3 is the optimal
                    152: *>          blocksize for a call of DORMRQ.
                    153: *>
                    154: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    155: *>          only calculates the optimal size of the WORK array, returns
                    156: *>          this value as the first entry of the WORK array, and no error
                    157: *>          message related to LWORK is issued by XERBLA.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] INFO
                    161: *> \verbatim
                    162: *>          INFO is INTEGER
                    163: *>          = 0:  successful exit
                    164: *>          < 0:  if INF0= -i, the i-th argument had an illegal value.
                    165: *> \endverbatim
                    166: *
                    167: *  Authors:
                    168: *  ========
                    169: *
1.15      bertrand  170: *> \author Univ. of Tennessee
                    171: *> \author Univ. of California Berkeley
                    172: *> \author Univ. of Colorado Denver
                    173: *> \author NAG Ltd.
1.9       bertrand  174: *
                    175: *> \ingroup doubleOTHERcomputational
                    176: *
                    177: *> \par Further Details:
                    178: *  =====================
                    179: *>
                    180: *> \verbatim
                    181: *>
                    182: *>  The matrix Q is represented as a product of elementary reflectors
                    183: *>
                    184: *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
                    185: *>
                    186: *>  Each H(i) has the form
                    187: *>
                    188: *>     H(i) = I - taua * v * v**T
                    189: *>
                    190: *>  where taua is a real scalar, and v is a real vector with
                    191: *>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
                    192: *>  A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
                    193: *>  To form Q explicitly, use LAPACK subroutine DORGRQ.
                    194: *>  To use Q to update another matrix, use LAPACK subroutine DORMRQ.
                    195: *>
                    196: *>  The matrix Z is represented as a product of elementary reflectors
                    197: *>
                    198: *>     Z = H(1) H(2) . . . H(k), where k = min(p,n).
                    199: *>
                    200: *>  Each H(i) has the form
                    201: *>
                    202: *>     H(i) = I - taub * v * v**T
                    203: *>
                    204: *>  where taub is a real scalar, and v is a real vector with
                    205: *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
                    206: *>  and taub in TAUB(i).
                    207: *>  To form Z explicitly, use LAPACK subroutine DORGQR.
                    208: *>  To use Z to update another matrix, use LAPACK subroutine DORMQR.
                    209: *> \endverbatim
                    210: *>
                    211: *  =====================================================================
1.1       bertrand  212:       SUBROUTINE DGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK,
                    213:      $                   LWORK, INFO )
                    214: *
1.18    ! bertrand  215: *  -- LAPACK computational routine --
1.1       bertrand  216: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    217: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    218: *
                    219: *     .. Scalar Arguments ..
                    220:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                    221: *     ..
                    222: *     .. Array Arguments ..
                    223:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
                    224:      $                   WORK( * )
                    225: *     ..
                    226: *
                    227: *  =====================================================================
                    228: *
                    229: *     .. Local Scalars ..
                    230:       LOGICAL            LQUERY
                    231:       INTEGER            LOPT, LWKOPT, NB, NB1, NB2, NB3
                    232: *     ..
                    233: *     .. External Subroutines ..
                    234:       EXTERNAL           DGEQRF, DGERQF, DORMRQ, XERBLA
                    235: *     ..
                    236: *     .. External Functions ..
                    237:       INTEGER            ILAENV
                    238:       EXTERNAL           ILAENV
                    239: *     ..
                    240: *     .. Intrinsic Functions ..
                    241:       INTRINSIC          INT, MAX, MIN
                    242: *     ..
                    243: *     .. Executable Statements ..
                    244: *
                    245: *     Test the input parameters
                    246: *
                    247:       INFO = 0
                    248:       NB1 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
                    249:       NB2 = ILAENV( 1, 'DGEQRF', ' ', P, N, -1, -1 )
                    250:       NB3 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
                    251:       NB = MAX( NB1, NB2, NB3 )
                    252:       LWKOPT = MAX( N, M, P )*NB
                    253:       WORK( 1 ) = LWKOPT
                    254:       LQUERY = ( LWORK.EQ.-1 )
                    255:       IF( M.LT.0 ) THEN
                    256:          INFO = -1
                    257:       ELSE IF( P.LT.0 ) THEN
                    258:          INFO = -2
                    259:       ELSE IF( N.LT.0 ) THEN
                    260:          INFO = -3
                    261:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    262:          INFO = -5
                    263:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    264:          INFO = -8
                    265:       ELSE IF( LWORK.LT.MAX( 1, M, P, N ) .AND. .NOT.LQUERY ) THEN
                    266:          INFO = -11
                    267:       END IF
                    268:       IF( INFO.NE.0 ) THEN
                    269:          CALL XERBLA( 'DGGRQF', -INFO )
                    270:          RETURN
                    271:       ELSE IF( LQUERY ) THEN
                    272:          RETURN
                    273:       END IF
                    274: *
                    275: *     RQ factorization of M-by-N matrix A: A = R*Q
                    276: *
                    277:       CALL DGERQF( M, N, A, LDA, TAUA, WORK, LWORK, INFO )
1.18    ! bertrand  278:       LOPT = INT( WORK( 1 ) )
1.1       bertrand  279: *
1.8       bertrand  280: *     Update B := B*Q**T
1.1       bertrand  281: *
                    282:       CALL DORMRQ( 'Right', 'Transpose', P, N, MIN( M, N ),
                    283:      $             A( MAX( 1, M-N+1 ), 1 ), LDA, TAUA, B, LDB, WORK,
                    284:      $             LWORK, INFO )
                    285:       LOPT = MAX( LOPT, INT( WORK( 1 ) ) )
                    286: *
                    287: *     QR factorization of P-by-N matrix B: B = Z*T
                    288: *
                    289:       CALL DGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO )
                    290:       WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) )
                    291: *
                    292:       RETURN
                    293: *
                    294: *     End of DGGRQF
                    295: *
                    296:       END

CVSweb interface <joel.bertrand@systella.fr>