File:  [local] / rpl / lapack / lapack / dgglse.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:38 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
    2:      $                   INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
   11: *     ..
   12: *     .. Array Arguments ..
   13:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( * ), D( * ),
   14:      $                   WORK( * ), X( * )
   15: *     ..
   16: *
   17: *  Purpose
   18: *  =======
   19: *
   20: *  DGGLSE solves the linear equality-constrained least squares (LSE)
   21: *  problem:
   22: *
   23: *          minimize || c - A*x ||_2   subject to   B*x = d
   24: *
   25: *  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
   26: *  M-vector, and d is a given P-vector. It is assumed that
   27: *  P <= N <= M+P, and
   28: *
   29: *           rank(B) = P and  rank( (A) ) = N.
   30: *                                ( (B) )
   31: *
   32: *  These conditions ensure that the LSE problem has a unique solution,
   33: *  which is obtained using a generalized RQ factorization of the
   34: *  matrices (B, A) given by
   35: *
   36: *     B = (0 R)*Q,   A = Z*T*Q.
   37: *
   38: *  Arguments
   39: *  =========
   40: *
   41: *  M       (input) INTEGER
   42: *          The number of rows of the matrix A.  M >= 0.
   43: *
   44: *  N       (input) INTEGER
   45: *          The number of columns of the matrices A and B. N >= 0.
   46: *
   47: *  P       (input) INTEGER
   48: *          The number of rows of the matrix B. 0 <= P <= N <= M+P.
   49: *
   50: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   51: *          On entry, the M-by-N matrix A.
   52: *          On exit, the elements on and above the diagonal of the array
   53: *          contain the min(M,N)-by-N upper trapezoidal matrix T.
   54: *
   55: *  LDA     (input) INTEGER
   56: *          The leading dimension of the array A. LDA >= max(1,M).
   57: *
   58: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
   59: *          On entry, the P-by-N matrix B.
   60: *          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
   61: *          contains the P-by-P upper triangular matrix R.
   62: *
   63: *  LDB     (input) INTEGER
   64: *          The leading dimension of the array B. LDB >= max(1,P).
   65: *
   66: *  C       (input/output) DOUBLE PRECISION array, dimension (M)
   67: *          On entry, C contains the right hand side vector for the
   68: *          least squares part of the LSE problem.
   69: *          On exit, the residual sum of squares for the solution
   70: *          is given by the sum of squares of elements N-P+1 to M of
   71: *          vector C.
   72: *
   73: *  D       (input/output) DOUBLE PRECISION array, dimension (P)
   74: *          On entry, D contains the right hand side vector for the
   75: *          constrained equation.
   76: *          On exit, D is destroyed.
   77: *
   78: *  X       (output) DOUBLE PRECISION array, dimension (N)
   79: *          On exit, X is the solution of the LSE problem.
   80: *
   81: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   82: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   83: *
   84: *  LWORK   (input) INTEGER
   85: *          The dimension of the array WORK. LWORK >= max(1,M+N+P).
   86: *          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
   87: *          where NB is an upper bound for the optimal blocksizes for
   88: *          DGEQRF, SGERQF, DORMQR and SORMRQ.
   89: *
   90: *          If LWORK = -1, then a workspace query is assumed; the routine
   91: *          only calculates the optimal size of the WORK array, returns
   92: *          this value as the first entry of the WORK array, and no error
   93: *          message related to LWORK is issued by XERBLA.
   94: *
   95: *  INFO    (output) INTEGER
   96: *          = 0:  successful exit.
   97: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
   98: *          = 1:  the upper triangular factor R associated with B in the
   99: *                generalized RQ factorization of the pair (B, A) is
  100: *                singular, so that rank(B) < P; the least squares
  101: *                solution could not be computed.
  102: *          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
  103: *                T associated with A in the generalized RQ factorization
  104: *                of the pair (B, A) is singular, so that
  105: *                rank( (A) ) < N; the least squares solution could not
  106: *                    ( (B) )
  107: *                be computed.
  108: *
  109: *  =====================================================================
  110: *
  111: *     .. Parameters ..
  112:       DOUBLE PRECISION   ONE
  113:       PARAMETER          ( ONE = 1.0D+0 )
  114: *     ..
  115: *     .. Local Scalars ..
  116:       LOGICAL            LQUERY
  117:       INTEGER            LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
  118:      $                   NB4, NR
  119: *     ..
  120: *     .. External Subroutines ..
  121:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGGRQF, DORMQR, DORMRQ,
  122:      $                   DTRMV, DTRTRS, XERBLA
  123: *     ..
  124: *     .. External Functions ..
  125:       INTEGER            ILAENV
  126:       EXTERNAL           ILAENV
  127: *     ..
  128: *     .. Intrinsic Functions ..
  129:       INTRINSIC          INT, MAX, MIN
  130: *     ..
  131: *     .. Executable Statements ..
  132: *
  133: *     Test the input parameters
  134: *
  135:       INFO = 0
  136:       MN = MIN( M, N )
  137:       LQUERY = ( LWORK.EQ.-1 )
  138:       IF( M.LT.0 ) THEN
  139:          INFO = -1
  140:       ELSE IF( N.LT.0 ) THEN
  141:          INFO = -2
  142:       ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
  143:          INFO = -3
  144:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  145:          INFO = -5
  146:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  147:          INFO = -7
  148:       END IF
  149: *
  150: *     Calculate workspace
  151: *
  152:       IF( INFO.EQ.0) THEN
  153:          IF( N.EQ.0 ) THEN
  154:             LWKMIN = 1
  155:             LWKOPT = 1
  156:          ELSE
  157:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
  158:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
  159:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, P, -1 )
  160:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
  161:             NB = MAX( NB1, NB2, NB3, NB4 )
  162:             LWKMIN = M + N + P
  163:             LWKOPT = P + MN + MAX( M, N )*NB
  164:          END IF
  165:          WORK( 1 ) = LWKOPT
  166: *
  167:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  168:             INFO = -12
  169:          END IF
  170:       END IF
  171: *
  172:       IF( INFO.NE.0 ) THEN
  173:          CALL XERBLA( 'DGGLSE', -INFO )
  174:          RETURN
  175:       ELSE IF( LQUERY ) THEN
  176:          RETURN
  177:       END IF
  178: *
  179: *     Quick return if possible
  180: *
  181:       IF( N.EQ.0 )
  182:      $   RETURN
  183: *
  184: *     Compute the GRQ factorization of matrices B and A:
  185: *
  186: *            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P
  187: *                     N-P  P                  (  0  R22 ) M+P-N
  188: *                                               N-P  P
  189: *
  190: *     where T12 and R11 are upper triangular, and Q and Z are
  191: *     orthogonal.
  192: *
  193:       CALL DGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
  194:      $             WORK( P+MN+1 ), LWORK-P-MN, INFO )
  195:       LOPT = WORK( P+MN+1 )
  196: *
  197: *     Update c = Z'*c = ( c1 ) N-P
  198: *                       ( c2 ) M+P-N
  199: *
  200:       CALL DORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
  201:      $             C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
  202:       LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
  203: *
  204: *     Solve T12*x2 = d for x2
  205: *
  206:       IF( P.GT.0 ) THEN
  207:          CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
  208:      $                B( 1, N-P+1 ), LDB, D, P, INFO )
  209: *
  210:          IF( INFO.GT.0 ) THEN
  211:             INFO = 1
  212:             RETURN
  213:          END IF
  214: *
  215: *        Put the solution in X
  216: *
  217:          CALL DCOPY( P, D, 1, X( N-P+1 ), 1 )
  218: *
  219: *        Update c1
  220: *
  221:          CALL DGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
  222:      $               D, 1, ONE, C, 1 )
  223:       END IF
  224: *
  225: *     Solve R11*x1 = c1 for x1
  226: *
  227:       IF( N.GT.P ) THEN
  228:          CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
  229:      $                A, LDA, C, N-P, INFO )
  230: *
  231:          IF( INFO.GT.0 ) THEN
  232:             INFO = 2
  233:             RETURN
  234:          END IF
  235: *
  236: *        Put the solutions in X
  237: *
  238:          CALL DCOPY( N-P, C, 1, X, 1 )
  239:       END IF
  240: *
  241: *     Compute the residual vector:
  242: *
  243:       IF( M.LT.N ) THEN
  244:          NR = M + P - N
  245:          IF( NR.GT.0 )
  246:      $      CALL DGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
  247:      $                  LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
  248:       ELSE
  249:          NR = P
  250:       END IF
  251:       IF( NR.GT.0 ) THEN
  252:          CALL DTRMV( 'Upper', 'No transpose', 'Non unit', NR,
  253:      $               A( N-P+1, N-P+1 ), LDA, D, 1 )
  254:          CALL DAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
  255:       END IF
  256: *
  257: *     Backward transformation x = Q'*x
  258: *
  259:       CALL DORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
  260:      $             N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
  261:       WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
  262: *
  263:       RETURN
  264: *
  265: *     End of DGGLSE
  266: *
  267:       END

CVSweb interface <joel.bertrand@systella.fr>