Annotation of rpl/lapack/lapack/dgglse.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
                      2:      $                   INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( * ), D( * ),
                     14:      $                   WORK( * ), X( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DGGLSE solves the linear equality-constrained least squares (LSE)
                     21: *  problem:
                     22: *
                     23: *          minimize || c - A*x ||_2   subject to   B*x = d
                     24: *
                     25: *  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
                     26: *  M-vector, and d is a given P-vector. It is assumed that
                     27: *  P <= N <= M+P, and
                     28: *
                     29: *           rank(B) = P and  rank( (A) ) = N.
                     30: *                                ( (B) )
                     31: *
                     32: *  These conditions ensure that the LSE problem has a unique solution,
                     33: *  which is obtained using a generalized RQ factorization of the
                     34: *  matrices (B, A) given by
                     35: *
                     36: *     B = (0 R)*Q,   A = Z*T*Q.
                     37: *
                     38: *  Arguments
                     39: *  =========
                     40: *
                     41: *  M       (input) INTEGER
                     42: *          The number of rows of the matrix A.  M >= 0.
                     43: *
                     44: *  N       (input) INTEGER
                     45: *          The number of columns of the matrices A and B. N >= 0.
                     46: *
                     47: *  P       (input) INTEGER
                     48: *          The number of rows of the matrix B. 0 <= P <= N <= M+P.
                     49: *
                     50: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     51: *          On entry, the M-by-N matrix A.
                     52: *          On exit, the elements on and above the diagonal of the array
                     53: *          contain the min(M,N)-by-N upper trapezoidal matrix T.
                     54: *
                     55: *  LDA     (input) INTEGER
                     56: *          The leading dimension of the array A. LDA >= max(1,M).
                     57: *
                     58: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
                     59: *          On entry, the P-by-N matrix B.
                     60: *          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
                     61: *          contains the P-by-P upper triangular matrix R.
                     62: *
                     63: *  LDB     (input) INTEGER
                     64: *          The leading dimension of the array B. LDB >= max(1,P).
                     65: *
                     66: *  C       (input/output) DOUBLE PRECISION array, dimension (M)
                     67: *          On entry, C contains the right hand side vector for the
                     68: *          least squares part of the LSE problem.
                     69: *          On exit, the residual sum of squares for the solution
                     70: *          is given by the sum of squares of elements N-P+1 to M of
                     71: *          vector C.
                     72: *
                     73: *  D       (input/output) DOUBLE PRECISION array, dimension (P)
                     74: *          On entry, D contains the right hand side vector for the
                     75: *          constrained equation.
                     76: *          On exit, D is destroyed.
                     77: *
                     78: *  X       (output) DOUBLE PRECISION array, dimension (N)
                     79: *          On exit, X is the solution of the LSE problem.
                     80: *
                     81: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     82: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     83: *
                     84: *  LWORK   (input) INTEGER
                     85: *          The dimension of the array WORK. LWORK >= max(1,M+N+P).
                     86: *          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
                     87: *          where NB is an upper bound for the optimal blocksizes for
                     88: *          DGEQRF, SGERQF, DORMQR and SORMRQ.
                     89: *
                     90: *          If LWORK = -1, then a workspace query is assumed; the routine
                     91: *          only calculates the optimal size of the WORK array, returns
                     92: *          this value as the first entry of the WORK array, and no error
                     93: *          message related to LWORK is issued by XERBLA.
                     94: *
                     95: *  INFO    (output) INTEGER
                     96: *          = 0:  successful exit.
                     97: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                     98: *          = 1:  the upper triangular factor R associated with B in the
                     99: *                generalized RQ factorization of the pair (B, A) is
                    100: *                singular, so that rank(B) < P; the least squares
                    101: *                solution could not be computed.
                    102: *          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
                    103: *                T associated with A in the generalized RQ factorization
                    104: *                of the pair (B, A) is singular, so that
                    105: *                rank( (A) ) < N; the least squares solution could not
                    106: *                    ( (B) )
                    107: *                be computed.
                    108: *
                    109: *  =====================================================================
                    110: *
                    111: *     .. Parameters ..
                    112:       DOUBLE PRECISION   ONE
                    113:       PARAMETER          ( ONE = 1.0D+0 )
                    114: *     ..
                    115: *     .. Local Scalars ..
                    116:       LOGICAL            LQUERY
                    117:       INTEGER            LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
                    118:      $                   NB4, NR
                    119: *     ..
                    120: *     .. External Subroutines ..
                    121:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGGRQF, DORMQR, DORMRQ,
                    122:      $                   DTRMV, DTRTRS, XERBLA
                    123: *     ..
                    124: *     .. External Functions ..
                    125:       INTEGER            ILAENV
                    126:       EXTERNAL           ILAENV
                    127: *     ..
                    128: *     .. Intrinsic Functions ..
                    129:       INTRINSIC          INT, MAX, MIN
                    130: *     ..
                    131: *     .. Executable Statements ..
                    132: *
                    133: *     Test the input parameters
                    134: *
                    135:       INFO = 0
                    136:       MN = MIN( M, N )
                    137:       LQUERY = ( LWORK.EQ.-1 )
                    138:       IF( M.LT.0 ) THEN
                    139:          INFO = -1
                    140:       ELSE IF( N.LT.0 ) THEN
                    141:          INFO = -2
                    142:       ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
                    143:          INFO = -3
                    144:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    145:          INFO = -5
                    146:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
                    147:          INFO = -7
                    148:       END IF
                    149: *
                    150: *     Calculate workspace
                    151: *
                    152:       IF( INFO.EQ.0) THEN
                    153:          IF( N.EQ.0 ) THEN
                    154:             LWKMIN = 1
                    155:             LWKOPT = 1
                    156:          ELSE
                    157:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    158:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
                    159:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, P, -1 )
                    160:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
                    161:             NB = MAX( NB1, NB2, NB3, NB4 )
                    162:             LWKMIN = M + N + P
                    163:             LWKOPT = P + MN + MAX( M, N )*NB
                    164:          END IF
                    165:          WORK( 1 ) = LWKOPT
                    166: *
                    167:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    168:             INFO = -12
                    169:          END IF
                    170:       END IF
                    171: *
                    172:       IF( INFO.NE.0 ) THEN
                    173:          CALL XERBLA( 'DGGLSE', -INFO )
                    174:          RETURN
                    175:       ELSE IF( LQUERY ) THEN
                    176:          RETURN
                    177:       END IF
                    178: *
                    179: *     Quick return if possible
                    180: *
                    181:       IF( N.EQ.0 )
                    182:      $   RETURN
                    183: *
                    184: *     Compute the GRQ factorization of matrices B and A:
                    185: *
                    186: *            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P
                    187: *                     N-P  P                  (  0  R22 ) M+P-N
                    188: *                                               N-P  P
                    189: *
                    190: *     where T12 and R11 are upper triangular, and Q and Z are
                    191: *     orthogonal.
                    192: *
                    193:       CALL DGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
                    194:      $             WORK( P+MN+1 ), LWORK-P-MN, INFO )
                    195:       LOPT = WORK( P+MN+1 )
                    196: *
                    197: *     Update c = Z'*c = ( c1 ) N-P
                    198: *                       ( c2 ) M+P-N
                    199: *
                    200:       CALL DORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
                    201:      $             C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
                    202:       LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
                    203: *
                    204: *     Solve T12*x2 = d for x2
                    205: *
                    206:       IF( P.GT.0 ) THEN
                    207:          CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
                    208:      $                B( 1, N-P+1 ), LDB, D, P, INFO )
                    209: *
                    210:          IF( INFO.GT.0 ) THEN
                    211:             INFO = 1
                    212:             RETURN
                    213:          END IF
                    214: *
                    215: *        Put the solution in X
                    216: *
                    217:          CALL DCOPY( P, D, 1, X( N-P+1 ), 1 )
                    218: *
                    219: *        Update c1
                    220: *
                    221:          CALL DGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
                    222:      $               D, 1, ONE, C, 1 )
                    223:       END IF
                    224: *
                    225: *     Solve R11*x1 = c1 for x1
                    226: *
                    227:       IF( N.GT.P ) THEN
                    228:          CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
                    229:      $                A, LDA, C, N-P, INFO )
                    230: *
                    231:          IF( INFO.GT.0 ) THEN
                    232:             INFO = 2
                    233:             RETURN
                    234:          END IF
                    235: *
                    236: *        Put the solutions in X
                    237: *
                    238:          CALL DCOPY( N-P, C, 1, X, 1 )
                    239:       END IF
                    240: *
                    241: *     Compute the residual vector:
                    242: *
                    243:       IF( M.LT.N ) THEN
                    244:          NR = M + P - N
                    245:          IF( NR.GT.0 )
                    246:      $      CALL DGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
                    247:      $                  LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
                    248:       ELSE
                    249:          NR = P
                    250:       END IF
                    251:       IF( NR.GT.0 ) THEN
                    252:          CALL DTRMV( 'Upper', 'No transpose', 'Non unit', NR,
                    253:      $               A( N-P+1, N-P+1 ), LDA, D, 1 )
                    254:          CALL DAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
                    255:       END IF
                    256: *
                    257: *     Backward transformation x = Q'*x
                    258: *
                    259:       CALL DORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
                    260:      $             N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
                    261:       WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
                    262: *
                    263:       RETURN
                    264: *
                    265: *     End of DGGLSE
                    266: *
                    267:       END

CVSweb interface <joel.bertrand@systella.fr>