Annotation of rpl/lapack/lapack/dgglse.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
        !             2:      $                   INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( * ), D( * ),
        !            14:      $                   WORK( * ), X( * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  DGGLSE solves the linear equality-constrained least squares (LSE)
        !            21: *  problem:
        !            22: *
        !            23: *          minimize || c - A*x ||_2   subject to   B*x = d
        !            24: *
        !            25: *  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
        !            26: *  M-vector, and d is a given P-vector. It is assumed that
        !            27: *  P <= N <= M+P, and
        !            28: *
        !            29: *           rank(B) = P and  rank( (A) ) = N.
        !            30: *                                ( (B) )
        !            31: *
        !            32: *  These conditions ensure that the LSE problem has a unique solution,
        !            33: *  which is obtained using a generalized RQ factorization of the
        !            34: *  matrices (B, A) given by
        !            35: *
        !            36: *     B = (0 R)*Q,   A = Z*T*Q.
        !            37: *
        !            38: *  Arguments
        !            39: *  =========
        !            40: *
        !            41: *  M       (input) INTEGER
        !            42: *          The number of rows of the matrix A.  M >= 0.
        !            43: *
        !            44: *  N       (input) INTEGER
        !            45: *          The number of columns of the matrices A and B. N >= 0.
        !            46: *
        !            47: *  P       (input) INTEGER
        !            48: *          The number of rows of the matrix B. 0 <= P <= N <= M+P.
        !            49: *
        !            50: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            51: *          On entry, the M-by-N matrix A.
        !            52: *          On exit, the elements on and above the diagonal of the array
        !            53: *          contain the min(M,N)-by-N upper trapezoidal matrix T.
        !            54: *
        !            55: *  LDA     (input) INTEGER
        !            56: *          The leading dimension of the array A. LDA >= max(1,M).
        !            57: *
        !            58: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
        !            59: *          On entry, the P-by-N matrix B.
        !            60: *          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
        !            61: *          contains the P-by-P upper triangular matrix R.
        !            62: *
        !            63: *  LDB     (input) INTEGER
        !            64: *          The leading dimension of the array B. LDB >= max(1,P).
        !            65: *
        !            66: *  C       (input/output) DOUBLE PRECISION array, dimension (M)
        !            67: *          On entry, C contains the right hand side vector for the
        !            68: *          least squares part of the LSE problem.
        !            69: *          On exit, the residual sum of squares for the solution
        !            70: *          is given by the sum of squares of elements N-P+1 to M of
        !            71: *          vector C.
        !            72: *
        !            73: *  D       (input/output) DOUBLE PRECISION array, dimension (P)
        !            74: *          On entry, D contains the right hand side vector for the
        !            75: *          constrained equation.
        !            76: *          On exit, D is destroyed.
        !            77: *
        !            78: *  X       (output) DOUBLE PRECISION array, dimension (N)
        !            79: *          On exit, X is the solution of the LSE problem.
        !            80: *
        !            81: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            82: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            83: *
        !            84: *  LWORK   (input) INTEGER
        !            85: *          The dimension of the array WORK. LWORK >= max(1,M+N+P).
        !            86: *          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
        !            87: *          where NB is an upper bound for the optimal blocksizes for
        !            88: *          DGEQRF, SGERQF, DORMQR and SORMRQ.
        !            89: *
        !            90: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            91: *          only calculates the optimal size of the WORK array, returns
        !            92: *          this value as the first entry of the WORK array, and no error
        !            93: *          message related to LWORK is issued by XERBLA.
        !            94: *
        !            95: *  INFO    (output) INTEGER
        !            96: *          = 0:  successful exit.
        !            97: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            98: *          = 1:  the upper triangular factor R associated with B in the
        !            99: *                generalized RQ factorization of the pair (B, A) is
        !           100: *                singular, so that rank(B) < P; the least squares
        !           101: *                solution could not be computed.
        !           102: *          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
        !           103: *                T associated with A in the generalized RQ factorization
        !           104: *                of the pair (B, A) is singular, so that
        !           105: *                rank( (A) ) < N; the least squares solution could not
        !           106: *                    ( (B) )
        !           107: *                be computed.
        !           108: *
        !           109: *  =====================================================================
        !           110: *
        !           111: *     .. Parameters ..
        !           112:       DOUBLE PRECISION   ONE
        !           113:       PARAMETER          ( ONE = 1.0D+0 )
        !           114: *     ..
        !           115: *     .. Local Scalars ..
        !           116:       LOGICAL            LQUERY
        !           117:       INTEGER            LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
        !           118:      $                   NB4, NR
        !           119: *     ..
        !           120: *     .. External Subroutines ..
        !           121:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGGRQF, DORMQR, DORMRQ,
        !           122:      $                   DTRMV, DTRTRS, XERBLA
        !           123: *     ..
        !           124: *     .. External Functions ..
        !           125:       INTEGER            ILAENV
        !           126:       EXTERNAL           ILAENV
        !           127: *     ..
        !           128: *     .. Intrinsic Functions ..
        !           129:       INTRINSIC          INT, MAX, MIN
        !           130: *     ..
        !           131: *     .. Executable Statements ..
        !           132: *
        !           133: *     Test the input parameters
        !           134: *
        !           135:       INFO = 0
        !           136:       MN = MIN( M, N )
        !           137:       LQUERY = ( LWORK.EQ.-1 )
        !           138:       IF( M.LT.0 ) THEN
        !           139:          INFO = -1
        !           140:       ELSE IF( N.LT.0 ) THEN
        !           141:          INFO = -2
        !           142:       ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
        !           143:          INFO = -3
        !           144:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           145:          INFO = -5
        !           146:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
        !           147:          INFO = -7
        !           148:       END IF
        !           149: *
        !           150: *     Calculate workspace
        !           151: *
        !           152:       IF( INFO.EQ.0) THEN
        !           153:          IF( N.EQ.0 ) THEN
        !           154:             LWKMIN = 1
        !           155:             LWKOPT = 1
        !           156:          ELSE
        !           157:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
        !           158:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
        !           159:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, P, -1 )
        !           160:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 )
        !           161:             NB = MAX( NB1, NB2, NB3, NB4 )
        !           162:             LWKMIN = M + N + P
        !           163:             LWKOPT = P + MN + MAX( M, N )*NB
        !           164:          END IF
        !           165:          WORK( 1 ) = LWKOPT
        !           166: *
        !           167:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
        !           168:             INFO = -12
        !           169:          END IF
        !           170:       END IF
        !           171: *
        !           172:       IF( INFO.NE.0 ) THEN
        !           173:          CALL XERBLA( 'DGGLSE', -INFO )
        !           174:          RETURN
        !           175:       ELSE IF( LQUERY ) THEN
        !           176:          RETURN
        !           177:       END IF
        !           178: *
        !           179: *     Quick return if possible
        !           180: *
        !           181:       IF( N.EQ.0 )
        !           182:      $   RETURN
        !           183: *
        !           184: *     Compute the GRQ factorization of matrices B and A:
        !           185: *
        !           186: *            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P
        !           187: *                     N-P  P                  (  0  R22 ) M+P-N
        !           188: *                                               N-P  P
        !           189: *
        !           190: *     where T12 and R11 are upper triangular, and Q and Z are
        !           191: *     orthogonal.
        !           192: *
        !           193:       CALL DGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
        !           194:      $             WORK( P+MN+1 ), LWORK-P-MN, INFO )
        !           195:       LOPT = WORK( P+MN+1 )
        !           196: *
        !           197: *     Update c = Z'*c = ( c1 ) N-P
        !           198: *                       ( c2 ) M+P-N
        !           199: *
        !           200:       CALL DORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
        !           201:      $             C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
        !           202:       LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
        !           203: *
        !           204: *     Solve T12*x2 = d for x2
        !           205: *
        !           206:       IF( P.GT.0 ) THEN
        !           207:          CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
        !           208:      $                B( 1, N-P+1 ), LDB, D, P, INFO )
        !           209: *
        !           210:          IF( INFO.GT.0 ) THEN
        !           211:             INFO = 1
        !           212:             RETURN
        !           213:          END IF
        !           214: *
        !           215: *        Put the solution in X
        !           216: *
        !           217:          CALL DCOPY( P, D, 1, X( N-P+1 ), 1 )
        !           218: *
        !           219: *        Update c1
        !           220: *
        !           221:          CALL DGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
        !           222:      $               D, 1, ONE, C, 1 )
        !           223:       END IF
        !           224: *
        !           225: *     Solve R11*x1 = c1 for x1
        !           226: *
        !           227:       IF( N.GT.P ) THEN
        !           228:          CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
        !           229:      $                A, LDA, C, N-P, INFO )
        !           230: *
        !           231:          IF( INFO.GT.0 ) THEN
        !           232:             INFO = 2
        !           233:             RETURN
        !           234:          END IF
        !           235: *
        !           236: *        Put the solutions in X
        !           237: *
        !           238:          CALL DCOPY( N-P, C, 1, X, 1 )
        !           239:       END IF
        !           240: *
        !           241: *     Compute the residual vector:
        !           242: *
        !           243:       IF( M.LT.N ) THEN
        !           244:          NR = M + P - N
        !           245:          IF( NR.GT.0 )
        !           246:      $      CALL DGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
        !           247:      $                  LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
        !           248:       ELSE
        !           249:          NR = P
        !           250:       END IF
        !           251:       IF( NR.GT.0 ) THEN
        !           252:          CALL DTRMV( 'Upper', 'No transpose', 'Non unit', NR,
        !           253:      $               A( N-P+1, N-P+1 ), LDA, D, 1 )
        !           254:          CALL DAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
        !           255:       END IF
        !           256: *
        !           257: *     Backward transformation x = Q'*x
        !           258: *
        !           259:       CALL DORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
        !           260:      $             N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
        !           261:       WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
        !           262: *
        !           263:       RETURN
        !           264: *
        !           265: *     End of DGGLSE
        !           266: *
        !           267:       END

CVSweb interface <joel.bertrand@systella.fr>