File:  [local] / rpl / lapack / lapack / dgghrd.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:14 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
    2:      $                   LDQ, Z, LDZ, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          COMPQ, COMPZ
   11:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   15:      $                   Z( LDZ, * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  DGGHRD reduces a pair of real matrices (A,B) to generalized upper
   22: *  Hessenberg form using orthogonal transformations, where A is a
   23: *  general matrix and B is upper triangular.  The form of the
   24: *  generalized eigenvalue problem is
   25: *     A*x = lambda*B*x,
   26: *  and B is typically made upper triangular by computing its QR
   27: *  factorization and moving the orthogonal matrix Q to the left side
   28: *  of the equation.
   29: *
   30: *  This subroutine simultaneously reduces A to a Hessenberg matrix H:
   31: *     Q**T*A*Z = H
   32: *  and transforms B to another upper triangular matrix T:
   33: *     Q**T*B*Z = T
   34: *  in order to reduce the problem to its standard form
   35: *     H*y = lambda*T*y
   36: *  where y = Z**T*x.
   37: *
   38: *  The orthogonal matrices Q and Z are determined as products of Givens
   39: *  rotations.  They may either be formed explicitly, or they may be
   40: *  postmultiplied into input matrices Q1 and Z1, so that
   41: *
   42: *       Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
   43: *
   44: *       Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
   45: *
   46: *  If Q1 is the orthogonal matrix from the QR factorization of B in the
   47: *  original equation A*x = lambda*B*x, then DGGHRD reduces the original
   48: *  problem to generalized Hessenberg form.
   49: *
   50: *  Arguments
   51: *  =========
   52: *
   53: *  COMPQ   (input) CHARACTER*1
   54: *          = 'N': do not compute Q;
   55: *          = 'I': Q is initialized to the unit matrix, and the
   56: *                 orthogonal matrix Q is returned;
   57: *          = 'V': Q must contain an orthogonal matrix Q1 on entry,
   58: *                 and the product Q1*Q is returned.
   59: *
   60: *  COMPZ   (input) CHARACTER*1
   61: *          = 'N': do not compute Z;
   62: *          = 'I': Z is initialized to the unit matrix, and the
   63: *                 orthogonal matrix Z is returned;
   64: *          = 'V': Z must contain an orthogonal matrix Z1 on entry,
   65: *                 and the product Z1*Z is returned.
   66: *
   67: *  N       (input) INTEGER
   68: *          The order of the matrices A and B.  N >= 0.
   69: *
   70: *  ILO     (input) INTEGER
   71: *  IHI     (input) INTEGER
   72: *          ILO and IHI mark the rows and columns of A which are to be
   73: *          reduced.  It is assumed that A is already upper triangular
   74: *          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
   75: *          normally set by a previous call to SGGBAL; otherwise they
   76: *          should be set to 1 and N respectively.
   77: *          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
   78: *
   79: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
   80: *          On entry, the N-by-N general matrix to be reduced.
   81: *          On exit, the upper triangle and the first subdiagonal of A
   82: *          are overwritten with the upper Hessenberg matrix H, and the
   83: *          rest is set to zero.
   84: *
   85: *  LDA     (input) INTEGER
   86: *          The leading dimension of the array A.  LDA >= max(1,N).
   87: *
   88: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
   89: *          On entry, the N-by-N upper triangular matrix B.
   90: *          On exit, the upper triangular matrix T = Q**T B Z.  The
   91: *          elements below the diagonal are set to zero.
   92: *
   93: *  LDB     (input) INTEGER
   94: *          The leading dimension of the array B.  LDB >= max(1,N).
   95: *
   96: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
   97: *          On entry, if COMPQ = 'V', the orthogonal matrix Q1,
   98: *          typically from the QR factorization of B.
   99: *          On exit, if COMPQ='I', the orthogonal matrix Q, and if
  100: *          COMPQ = 'V', the product Q1*Q.
  101: *          Not referenced if COMPQ='N'.
  102: *
  103: *  LDQ     (input) INTEGER
  104: *          The leading dimension of the array Q.
  105: *          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
  106: *
  107: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
  108: *          On entry, if COMPZ = 'V', the orthogonal matrix Z1.
  109: *          On exit, if COMPZ='I', the orthogonal matrix Z, and if
  110: *          COMPZ = 'V', the product Z1*Z.
  111: *          Not referenced if COMPZ='N'.
  112: *
  113: *  LDZ     (input) INTEGER
  114: *          The leading dimension of the array Z.
  115: *          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
  116: *
  117: *  INFO    (output) INTEGER
  118: *          = 0:  successful exit.
  119: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  120: *
  121: *  Further Details
  122: *  ===============
  123: *
  124: *  This routine reduces A to Hessenberg and B to triangular form by
  125: *  an unblocked reduction, as described in _Matrix_Computations_,
  126: *  by Golub and Van Loan (Johns Hopkins Press.)
  127: *
  128: *  =====================================================================
  129: *
  130: *     .. Parameters ..
  131:       DOUBLE PRECISION   ONE, ZERO
  132:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  133: *     ..
  134: *     .. Local Scalars ..
  135:       LOGICAL            ILQ, ILZ
  136:       INTEGER            ICOMPQ, ICOMPZ, JCOL, JROW
  137:       DOUBLE PRECISION   C, S, TEMP
  138: *     ..
  139: *     .. External Functions ..
  140:       LOGICAL            LSAME
  141:       EXTERNAL           LSAME
  142: *     ..
  143: *     .. External Subroutines ..
  144:       EXTERNAL           DLARTG, DLASET, DROT, XERBLA
  145: *     ..
  146: *     .. Intrinsic Functions ..
  147:       INTRINSIC          MAX
  148: *     ..
  149: *     .. Executable Statements ..
  150: *
  151: *     Decode COMPQ
  152: *
  153:       IF( LSAME( COMPQ, 'N' ) ) THEN
  154:          ILQ = .FALSE.
  155:          ICOMPQ = 1
  156:       ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
  157:          ILQ = .TRUE.
  158:          ICOMPQ = 2
  159:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
  160:          ILQ = .TRUE.
  161:          ICOMPQ = 3
  162:       ELSE
  163:          ICOMPQ = 0
  164:       END IF
  165: *
  166: *     Decode COMPZ
  167: *
  168:       IF( LSAME( COMPZ, 'N' ) ) THEN
  169:          ILZ = .FALSE.
  170:          ICOMPZ = 1
  171:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
  172:          ILZ = .TRUE.
  173:          ICOMPZ = 2
  174:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
  175:          ILZ = .TRUE.
  176:          ICOMPZ = 3
  177:       ELSE
  178:          ICOMPZ = 0
  179:       END IF
  180: *
  181: *     Test the input parameters.
  182: *
  183:       INFO = 0
  184:       IF( ICOMPQ.LE.0 ) THEN
  185:          INFO = -1
  186:       ELSE IF( ICOMPZ.LE.0 ) THEN
  187:          INFO = -2
  188:       ELSE IF( N.LT.0 ) THEN
  189:          INFO = -3
  190:       ELSE IF( ILO.LT.1 ) THEN
  191:          INFO = -4
  192:       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
  193:          INFO = -5
  194:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  195:          INFO = -7
  196:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  197:          INFO = -9
  198:       ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
  199:          INFO = -11
  200:       ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
  201:          INFO = -13
  202:       END IF
  203:       IF( INFO.NE.0 ) THEN
  204:          CALL XERBLA( 'DGGHRD', -INFO )
  205:          RETURN
  206:       END IF
  207: *
  208: *     Initialize Q and Z if desired.
  209: *
  210:       IF( ICOMPQ.EQ.3 )
  211:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
  212:       IF( ICOMPZ.EQ.3 )
  213:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
  214: *
  215: *     Quick return if possible
  216: *
  217:       IF( N.LE.1 )
  218:      $   RETURN
  219: *
  220: *     Zero out lower triangle of B
  221: *
  222:       DO 20 JCOL = 1, N - 1
  223:          DO 10 JROW = JCOL + 1, N
  224:             B( JROW, JCOL ) = ZERO
  225:    10    CONTINUE
  226:    20 CONTINUE
  227: *
  228: *     Reduce A and B
  229: *
  230:       DO 40 JCOL = ILO, IHI - 2
  231: *
  232:          DO 30 JROW = IHI, JCOL + 2, -1
  233: *
  234: *           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
  235: *
  236:             TEMP = A( JROW-1, JCOL )
  237:             CALL DLARTG( TEMP, A( JROW, JCOL ), C, S,
  238:      $                   A( JROW-1, JCOL ) )
  239:             A( JROW, JCOL ) = ZERO
  240:             CALL DROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
  241:      $                 A( JROW, JCOL+1 ), LDA, C, S )
  242:             CALL DROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
  243:      $                 B( JROW, JROW-1 ), LDB, C, S )
  244:             IF( ILQ )
  245:      $         CALL DROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C, S )
  246: *
  247: *           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
  248: *
  249:             TEMP = B( JROW, JROW )
  250:             CALL DLARTG( TEMP, B( JROW, JROW-1 ), C, S,
  251:      $                   B( JROW, JROW ) )
  252:             B( JROW, JROW-1 ) = ZERO
  253:             CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
  254:             CALL DROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
  255:      $                 S )
  256:             IF( ILZ )
  257:      $         CALL DROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
  258:    30    CONTINUE
  259:    40 CONTINUE
  260: *
  261:       RETURN
  262: *
  263: *     End of DGGHRD
  264: *
  265:       END

CVSweb interface <joel.bertrand@systella.fr>