Annotation of rpl/lapack/lapack/dgghrd.f, revision 1.10

1.8       bertrand    1: *> \brief \b DGGHRD
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGGHRD + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgghrd.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgghrd.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgghrd.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
                     22: *                          LDQ, Z, LDZ, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          COMPQ, COMPZ
                     26: *       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     30: *      $                   Z( LDZ, * )
                     31: *       ..
                     32: *  
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DGGHRD reduces a pair of real matrices (A,B) to generalized upper
                     40: *> Hessenberg form using orthogonal transformations, where A is a
                     41: *> general matrix and B is upper triangular.  The form of the
                     42: *> generalized eigenvalue problem is
                     43: *>    A*x = lambda*B*x,
                     44: *> and B is typically made upper triangular by computing its QR
                     45: *> factorization and moving the orthogonal matrix Q to the left side
                     46: *> of the equation.
                     47: *>
                     48: *> This subroutine simultaneously reduces A to a Hessenberg matrix H:
                     49: *>    Q**T*A*Z = H
                     50: *> and transforms B to another upper triangular matrix T:
                     51: *>    Q**T*B*Z = T
                     52: *> in order to reduce the problem to its standard form
                     53: *>    H*y = lambda*T*y
                     54: *> where y = Z**T*x.
                     55: *>
                     56: *> The orthogonal matrices Q and Z are determined as products of Givens
                     57: *> rotations.  They may either be formed explicitly, or they may be
                     58: *> postmultiplied into input matrices Q1 and Z1, so that
                     59: *>
                     60: *>      Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
                     61: *>
                     62: *>      Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
                     63: *>
                     64: *> If Q1 is the orthogonal matrix from the QR factorization of B in the
                     65: *> original equation A*x = lambda*B*x, then DGGHRD reduces the original
                     66: *> problem to generalized Hessenberg form.
                     67: *> \endverbatim
                     68: *
                     69: *  Arguments:
                     70: *  ==========
                     71: *
                     72: *> \param[in] COMPQ
                     73: *> \verbatim
                     74: *>          COMPQ is CHARACTER*1
                     75: *>          = 'N': do not compute Q;
                     76: *>          = 'I': Q is initialized to the unit matrix, and the
                     77: *>                 orthogonal matrix Q is returned;
                     78: *>          = 'V': Q must contain an orthogonal matrix Q1 on entry,
                     79: *>                 and the product Q1*Q is returned.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] COMPZ
                     83: *> \verbatim
                     84: *>          COMPZ is CHARACTER*1
                     85: *>          = 'N': do not compute Z;
                     86: *>          = 'I': Z is initialized to the unit matrix, and the
                     87: *>                 orthogonal matrix Z is returned;
                     88: *>          = 'V': Z must contain an orthogonal matrix Z1 on entry,
                     89: *>                 and the product Z1*Z is returned.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] N
                     93: *> \verbatim
                     94: *>          N is INTEGER
                     95: *>          The order of the matrices A and B.  N >= 0.
                     96: *> \endverbatim
                     97: *>
                     98: *> \param[in] ILO
                     99: *> \verbatim
                    100: *>          ILO is INTEGER
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] IHI
                    104: *> \verbatim
                    105: *>          IHI is INTEGER
                    106: *>
                    107: *>          ILO and IHI mark the rows and columns of A which are to be
                    108: *>          reduced.  It is assumed that A is already upper triangular
                    109: *>          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
                    110: *>          normally set by a previous call to DGGBAL; otherwise they
                    111: *>          should be set to 1 and N respectively.
                    112: *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in,out] A
                    116: *> \verbatim
                    117: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                    118: *>          On entry, the N-by-N general matrix to be reduced.
                    119: *>          On exit, the upper triangle and the first subdiagonal of A
                    120: *>          are overwritten with the upper Hessenberg matrix H, and the
                    121: *>          rest is set to zero.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] LDA
                    125: *> \verbatim
                    126: *>          LDA is INTEGER
                    127: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    128: *> \endverbatim
                    129: *>
                    130: *> \param[in,out] B
                    131: *> \verbatim
                    132: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
                    133: *>          On entry, the N-by-N upper triangular matrix B.
                    134: *>          On exit, the upper triangular matrix T = Q**T B Z.  The
                    135: *>          elements below the diagonal are set to zero.
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in] LDB
                    139: *> \verbatim
                    140: *>          LDB is INTEGER
                    141: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[in,out] Q
                    145: *> \verbatim
                    146: *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
                    147: *>          On entry, if COMPQ = 'V', the orthogonal matrix Q1,
                    148: *>          typically from the QR factorization of B.
                    149: *>          On exit, if COMPQ='I', the orthogonal matrix Q, and if
                    150: *>          COMPQ = 'V', the product Q1*Q.
                    151: *>          Not referenced if COMPQ='N'.
                    152: *> \endverbatim
                    153: *>
                    154: *> \param[in] LDQ
                    155: *> \verbatim
                    156: *>          LDQ is INTEGER
                    157: *>          The leading dimension of the array Q.
                    158: *>          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in,out] Z
                    162: *> \verbatim
                    163: *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
                    164: *>          On entry, if COMPZ = 'V', the orthogonal matrix Z1.
                    165: *>          On exit, if COMPZ='I', the orthogonal matrix Z, and if
                    166: *>          COMPZ = 'V', the product Z1*Z.
                    167: *>          Not referenced if COMPZ='N'.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[in] LDZ
                    171: *> \verbatim
                    172: *>          LDZ is INTEGER
                    173: *>          The leading dimension of the array Z.
                    174: *>          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0:  successful exit.
                    181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    182: *> \endverbatim
                    183: *
                    184: *  Authors:
                    185: *  ========
                    186: *
                    187: *> \author Univ. of Tennessee 
                    188: *> \author Univ. of California Berkeley 
                    189: *> \author Univ. of Colorado Denver 
                    190: *> \author NAG Ltd. 
                    191: *
                    192: *> \date November 2011
                    193: *
                    194: *> \ingroup doubleOTHERcomputational
                    195: *
                    196: *> \par Further Details:
                    197: *  =====================
                    198: *>
                    199: *> \verbatim
                    200: *>
                    201: *>  This routine reduces A to Hessenberg and B to triangular form by
                    202: *>  an unblocked reduction, as described in _Matrix_Computations_,
                    203: *>  by Golub and Van Loan (Johns Hopkins Press.)
                    204: *> \endverbatim
                    205: *>
                    206: *  =====================================================================
1.1       bertrand  207:       SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
                    208:      $                   LDQ, Z, LDZ, INFO )
                    209: *
1.8       bertrand  210: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  211: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    212: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  213: *     November 2011
1.1       bertrand  214: *
                    215: *     .. Scalar Arguments ..
                    216:       CHARACTER          COMPQ, COMPZ
                    217:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
                    218: *     ..
                    219: *     .. Array Arguments ..
                    220:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                    221:      $                   Z( LDZ, * )
                    222: *     ..
                    223: *
                    224: *  =====================================================================
                    225: *
                    226: *     .. Parameters ..
                    227:       DOUBLE PRECISION   ONE, ZERO
                    228:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    229: *     ..
                    230: *     .. Local Scalars ..
                    231:       LOGICAL            ILQ, ILZ
                    232:       INTEGER            ICOMPQ, ICOMPZ, JCOL, JROW
                    233:       DOUBLE PRECISION   C, S, TEMP
                    234: *     ..
                    235: *     .. External Functions ..
                    236:       LOGICAL            LSAME
                    237:       EXTERNAL           LSAME
                    238: *     ..
                    239: *     .. External Subroutines ..
                    240:       EXTERNAL           DLARTG, DLASET, DROT, XERBLA
                    241: *     ..
                    242: *     .. Intrinsic Functions ..
                    243:       INTRINSIC          MAX
                    244: *     ..
                    245: *     .. Executable Statements ..
                    246: *
                    247: *     Decode COMPQ
                    248: *
                    249:       IF( LSAME( COMPQ, 'N' ) ) THEN
                    250:          ILQ = .FALSE.
                    251:          ICOMPQ = 1
                    252:       ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
                    253:          ILQ = .TRUE.
                    254:          ICOMPQ = 2
                    255:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
                    256:          ILQ = .TRUE.
                    257:          ICOMPQ = 3
                    258:       ELSE
                    259:          ICOMPQ = 0
                    260:       END IF
                    261: *
                    262: *     Decode COMPZ
                    263: *
                    264:       IF( LSAME( COMPZ, 'N' ) ) THEN
                    265:          ILZ = .FALSE.
                    266:          ICOMPZ = 1
                    267:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
                    268:          ILZ = .TRUE.
                    269:          ICOMPZ = 2
                    270:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
                    271:          ILZ = .TRUE.
                    272:          ICOMPZ = 3
                    273:       ELSE
                    274:          ICOMPZ = 0
                    275:       END IF
                    276: *
                    277: *     Test the input parameters.
                    278: *
                    279:       INFO = 0
                    280:       IF( ICOMPQ.LE.0 ) THEN
                    281:          INFO = -1
                    282:       ELSE IF( ICOMPZ.LE.0 ) THEN
                    283:          INFO = -2
                    284:       ELSE IF( N.LT.0 ) THEN
                    285:          INFO = -3
                    286:       ELSE IF( ILO.LT.1 ) THEN
                    287:          INFO = -4
                    288:       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
                    289:          INFO = -5
                    290:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    291:          INFO = -7
                    292:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    293:          INFO = -9
                    294:       ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
                    295:          INFO = -11
                    296:       ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
                    297:          INFO = -13
                    298:       END IF
                    299:       IF( INFO.NE.0 ) THEN
                    300:          CALL XERBLA( 'DGGHRD', -INFO )
                    301:          RETURN
                    302:       END IF
                    303: *
                    304: *     Initialize Q and Z if desired.
                    305: *
                    306:       IF( ICOMPQ.EQ.3 )
                    307:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
                    308:       IF( ICOMPZ.EQ.3 )
                    309:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
                    310: *
                    311: *     Quick return if possible
                    312: *
                    313:       IF( N.LE.1 )
                    314:      $   RETURN
                    315: *
                    316: *     Zero out lower triangle of B
                    317: *
                    318:       DO 20 JCOL = 1, N - 1
                    319:          DO 10 JROW = JCOL + 1, N
                    320:             B( JROW, JCOL ) = ZERO
                    321:    10    CONTINUE
                    322:    20 CONTINUE
                    323: *
                    324: *     Reduce A and B
                    325: *
                    326:       DO 40 JCOL = ILO, IHI - 2
                    327: *
                    328:          DO 30 JROW = IHI, JCOL + 2, -1
                    329: *
                    330: *           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
                    331: *
                    332:             TEMP = A( JROW-1, JCOL )
                    333:             CALL DLARTG( TEMP, A( JROW, JCOL ), C, S,
                    334:      $                   A( JROW-1, JCOL ) )
                    335:             A( JROW, JCOL ) = ZERO
                    336:             CALL DROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
                    337:      $                 A( JROW, JCOL+1 ), LDA, C, S )
                    338:             CALL DROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
                    339:      $                 B( JROW, JROW-1 ), LDB, C, S )
                    340:             IF( ILQ )
                    341:      $         CALL DROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C, S )
                    342: *
                    343: *           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
                    344: *
                    345:             TEMP = B( JROW, JROW )
                    346:             CALL DLARTG( TEMP, B( JROW, JROW-1 ), C, S,
                    347:      $                   B( JROW, JROW ) )
                    348:             B( JROW, JROW-1 ) = ZERO
                    349:             CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
                    350:             CALL DROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
                    351:      $                 S )
                    352:             IF( ILZ )
                    353:      $         CALL DROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
                    354:    30    CONTINUE
                    355:    40 CONTINUE
                    356: *
                    357:       RETURN
                    358: *
                    359: *     End of DGGHRD
                    360: *
                    361:       END

CVSweb interface <joel.bertrand@systella.fr>