Annotation of rpl/lapack/lapack/dgghrd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGGHRD( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q,
        !             2:      $                   LDQ, Z, LDZ, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          COMPQ, COMPZ
        !            11:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDQ, LDZ, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
        !            15:      $                   Z( LDZ, * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DGGHRD reduces a pair of real matrices (A,B) to generalized upper
        !            22: *  Hessenberg form using orthogonal transformations, where A is a
        !            23: *  general matrix and B is upper triangular.  The form of the
        !            24: *  generalized eigenvalue problem is
        !            25: *     A*x = lambda*B*x,
        !            26: *  and B is typically made upper triangular by computing its QR
        !            27: *  factorization and moving the orthogonal matrix Q to the left side
        !            28: *  of the equation.
        !            29: *
        !            30: *  This subroutine simultaneously reduces A to a Hessenberg matrix H:
        !            31: *     Q**T*A*Z = H
        !            32: *  and transforms B to another upper triangular matrix T:
        !            33: *     Q**T*B*Z = T
        !            34: *  in order to reduce the problem to its standard form
        !            35: *     H*y = lambda*T*y
        !            36: *  where y = Z**T*x.
        !            37: *
        !            38: *  The orthogonal matrices Q and Z are determined as products of Givens
        !            39: *  rotations.  They may either be formed explicitly, or they may be
        !            40: *  postmultiplied into input matrices Q1 and Z1, so that
        !            41: *
        !            42: *       Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T
        !            43: *
        !            44: *       Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T
        !            45: *
        !            46: *  If Q1 is the orthogonal matrix from the QR factorization of B in the
        !            47: *  original equation A*x = lambda*B*x, then DGGHRD reduces the original
        !            48: *  problem to generalized Hessenberg form.
        !            49: *
        !            50: *  Arguments
        !            51: *  =========
        !            52: *
        !            53: *  COMPQ   (input) CHARACTER*1
        !            54: *          = 'N': do not compute Q;
        !            55: *          = 'I': Q is initialized to the unit matrix, and the
        !            56: *                 orthogonal matrix Q is returned;
        !            57: *          = 'V': Q must contain an orthogonal matrix Q1 on entry,
        !            58: *                 and the product Q1*Q is returned.
        !            59: *
        !            60: *  COMPZ   (input) CHARACTER*1
        !            61: *          = 'N': do not compute Z;
        !            62: *          = 'I': Z is initialized to the unit matrix, and the
        !            63: *                 orthogonal matrix Z is returned;
        !            64: *          = 'V': Z must contain an orthogonal matrix Z1 on entry,
        !            65: *                 and the product Z1*Z is returned.
        !            66: *
        !            67: *  N       (input) INTEGER
        !            68: *          The order of the matrices A and B.  N >= 0.
        !            69: *
        !            70: *  ILO     (input) INTEGER
        !            71: *  IHI     (input) INTEGER
        !            72: *          ILO and IHI mark the rows and columns of A which are to be
        !            73: *          reduced.  It is assumed that A is already upper triangular
        !            74: *          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
        !            75: *          normally set by a previous call to SGGBAL; otherwise they
        !            76: *          should be set to 1 and N respectively.
        !            77: *          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
        !            78: *
        !            79: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !            80: *          On entry, the N-by-N general matrix to be reduced.
        !            81: *          On exit, the upper triangle and the first subdiagonal of A
        !            82: *          are overwritten with the upper Hessenberg matrix H, and the
        !            83: *          rest is set to zero.
        !            84: *
        !            85: *  LDA     (input) INTEGER
        !            86: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            87: *
        !            88: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
        !            89: *          On entry, the N-by-N upper triangular matrix B.
        !            90: *          On exit, the upper triangular matrix T = Q**T B Z.  The
        !            91: *          elements below the diagonal are set to zero.
        !            92: *
        !            93: *  LDB     (input) INTEGER
        !            94: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            95: *
        !            96: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
        !            97: *          On entry, if COMPQ = 'V', the orthogonal matrix Q1,
        !            98: *          typically from the QR factorization of B.
        !            99: *          On exit, if COMPQ='I', the orthogonal matrix Q, and if
        !           100: *          COMPQ = 'V', the product Q1*Q.
        !           101: *          Not referenced if COMPQ='N'.
        !           102: *
        !           103: *  LDQ     (input) INTEGER
        !           104: *          The leading dimension of the array Q.
        !           105: *          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.
        !           106: *
        !           107: *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
        !           108: *          On entry, if COMPZ = 'V', the orthogonal matrix Z1.
        !           109: *          On exit, if COMPZ='I', the orthogonal matrix Z, and if
        !           110: *          COMPZ = 'V', the product Z1*Z.
        !           111: *          Not referenced if COMPZ='N'.
        !           112: *
        !           113: *  LDZ     (input) INTEGER
        !           114: *          The leading dimension of the array Z.
        !           115: *          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.
        !           116: *
        !           117: *  INFO    (output) INTEGER
        !           118: *          = 0:  successful exit.
        !           119: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           120: *
        !           121: *  Further Details
        !           122: *  ===============
        !           123: *
        !           124: *  This routine reduces A to Hessenberg and B to triangular form by
        !           125: *  an unblocked reduction, as described in _Matrix_Computations_,
        !           126: *  by Golub and Van Loan (Johns Hopkins Press.)
        !           127: *
        !           128: *  =====================================================================
        !           129: *
        !           130: *     .. Parameters ..
        !           131:       DOUBLE PRECISION   ONE, ZERO
        !           132:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
        !           133: *     ..
        !           134: *     .. Local Scalars ..
        !           135:       LOGICAL            ILQ, ILZ
        !           136:       INTEGER            ICOMPQ, ICOMPZ, JCOL, JROW
        !           137:       DOUBLE PRECISION   C, S, TEMP
        !           138: *     ..
        !           139: *     .. External Functions ..
        !           140:       LOGICAL            LSAME
        !           141:       EXTERNAL           LSAME
        !           142: *     ..
        !           143: *     .. External Subroutines ..
        !           144:       EXTERNAL           DLARTG, DLASET, DROT, XERBLA
        !           145: *     ..
        !           146: *     .. Intrinsic Functions ..
        !           147:       INTRINSIC          MAX
        !           148: *     ..
        !           149: *     .. Executable Statements ..
        !           150: *
        !           151: *     Decode COMPQ
        !           152: *
        !           153:       IF( LSAME( COMPQ, 'N' ) ) THEN
        !           154:          ILQ = .FALSE.
        !           155:          ICOMPQ = 1
        !           156:       ELSE IF( LSAME( COMPQ, 'V' ) ) THEN
        !           157:          ILQ = .TRUE.
        !           158:          ICOMPQ = 2
        !           159:       ELSE IF( LSAME( COMPQ, 'I' ) ) THEN
        !           160:          ILQ = .TRUE.
        !           161:          ICOMPQ = 3
        !           162:       ELSE
        !           163:          ICOMPQ = 0
        !           164:       END IF
        !           165: *
        !           166: *     Decode COMPZ
        !           167: *
        !           168:       IF( LSAME( COMPZ, 'N' ) ) THEN
        !           169:          ILZ = .FALSE.
        !           170:          ICOMPZ = 1
        !           171:       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
        !           172:          ILZ = .TRUE.
        !           173:          ICOMPZ = 2
        !           174:       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
        !           175:          ILZ = .TRUE.
        !           176:          ICOMPZ = 3
        !           177:       ELSE
        !           178:          ICOMPZ = 0
        !           179:       END IF
        !           180: *
        !           181: *     Test the input parameters.
        !           182: *
        !           183:       INFO = 0
        !           184:       IF( ICOMPQ.LE.0 ) THEN
        !           185:          INFO = -1
        !           186:       ELSE IF( ICOMPZ.LE.0 ) THEN
        !           187:          INFO = -2
        !           188:       ELSE IF( N.LT.0 ) THEN
        !           189:          INFO = -3
        !           190:       ELSE IF( ILO.LT.1 ) THEN
        !           191:          INFO = -4
        !           192:       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
        !           193:          INFO = -5
        !           194:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           195:          INFO = -7
        !           196:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           197:          INFO = -9
        !           198:       ELSE IF( ( ILQ .AND. LDQ.LT.N ) .OR. LDQ.LT.1 ) THEN
        !           199:          INFO = -11
        !           200:       ELSE IF( ( ILZ .AND. LDZ.LT.N ) .OR. LDZ.LT.1 ) THEN
        !           201:          INFO = -13
        !           202:       END IF
        !           203:       IF( INFO.NE.0 ) THEN
        !           204:          CALL XERBLA( 'DGGHRD', -INFO )
        !           205:          RETURN
        !           206:       END IF
        !           207: *
        !           208: *     Initialize Q and Z if desired.
        !           209: *
        !           210:       IF( ICOMPQ.EQ.3 )
        !           211:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
        !           212:       IF( ICOMPZ.EQ.3 )
        !           213:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
        !           214: *
        !           215: *     Quick return if possible
        !           216: *
        !           217:       IF( N.LE.1 )
        !           218:      $   RETURN
        !           219: *
        !           220: *     Zero out lower triangle of B
        !           221: *
        !           222:       DO 20 JCOL = 1, N - 1
        !           223:          DO 10 JROW = JCOL + 1, N
        !           224:             B( JROW, JCOL ) = ZERO
        !           225:    10    CONTINUE
        !           226:    20 CONTINUE
        !           227: *
        !           228: *     Reduce A and B
        !           229: *
        !           230:       DO 40 JCOL = ILO, IHI - 2
        !           231: *
        !           232:          DO 30 JROW = IHI, JCOL + 2, -1
        !           233: *
        !           234: *           Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL)
        !           235: *
        !           236:             TEMP = A( JROW-1, JCOL )
        !           237:             CALL DLARTG( TEMP, A( JROW, JCOL ), C, S,
        !           238:      $                   A( JROW-1, JCOL ) )
        !           239:             A( JROW, JCOL ) = ZERO
        !           240:             CALL DROT( N-JCOL, A( JROW-1, JCOL+1 ), LDA,
        !           241:      $                 A( JROW, JCOL+1 ), LDA, C, S )
        !           242:             CALL DROT( N+2-JROW, B( JROW-1, JROW-1 ), LDB,
        !           243:      $                 B( JROW, JROW-1 ), LDB, C, S )
        !           244:             IF( ILQ )
        !           245:      $         CALL DROT( N, Q( 1, JROW-1 ), 1, Q( 1, JROW ), 1, C, S )
        !           246: *
        !           247: *           Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1)
        !           248: *
        !           249:             TEMP = B( JROW, JROW )
        !           250:             CALL DLARTG( TEMP, B( JROW, JROW-1 ), C, S,
        !           251:      $                   B( JROW, JROW ) )
        !           252:             B( JROW, JROW-1 ) = ZERO
        !           253:             CALL DROT( IHI, A( 1, JROW ), 1, A( 1, JROW-1 ), 1, C, S )
        !           254:             CALL DROT( JROW-1, B( 1, JROW ), 1, B( 1, JROW-1 ), 1, C,
        !           255:      $                 S )
        !           256:             IF( ILZ )
        !           257:      $         CALL DROT( N, Z( 1, JROW ), 1, Z( 1, JROW-1 ), 1, C, S )
        !           258:    30    CONTINUE
        !           259:    40 CONTINUE
        !           260: *
        !           261:       RETURN
        !           262: *
        !           263: *     End of DGGHRD
        !           264: *
        !           265:       END

CVSweb interface <joel.bertrand@systella.fr>