Annotation of rpl/lapack/lapack/dggglm.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
                      2:      $                   INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
                     11: *     ..
                     12: *     .. Array Arguments ..
                     13:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
                     14:      $                   X( * ), Y( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
                     21: *
                     22: *          minimize || y ||_2   subject to   d = A*x + B*y
                     23: *              x
                     24: *
                     25: *  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
                     26: *  given N-vector. It is assumed that M <= N <= M+P, and
                     27: *
                     28: *             rank(A) = M    and    rank( A B ) = N.
                     29: *
                     30: *  Under these assumptions, the constrained equation is always
                     31: *  consistent, and there is a unique solution x and a minimal 2-norm
                     32: *  solution y, which is obtained using a generalized QR factorization
                     33: *  of the matrices (A, B) given by
                     34: *
                     35: *     A = Q*(R),   B = Q*T*Z.
                     36: *           (0)
                     37: *
                     38: *  In particular, if matrix B is square nonsingular, then the problem
                     39: *  GLM is equivalent to the following weighted linear least squares
                     40: *  problem
                     41: *
                     42: *               minimize || inv(B)*(d-A*x) ||_2
                     43: *                   x
                     44: *
                     45: *  where inv(B) denotes the inverse of B.
                     46: *
                     47: *  Arguments
                     48: *  =========
                     49: *
                     50: *  N       (input) INTEGER
                     51: *          The number of rows of the matrices A and B.  N >= 0.
                     52: *
                     53: *  M       (input) INTEGER
                     54: *          The number of columns of the matrix A.  0 <= M <= N.
                     55: *
                     56: *  P       (input) INTEGER
                     57: *          The number of columns of the matrix B.  P >= N-M.
                     58: *
                     59: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,M)
                     60: *          On entry, the N-by-M matrix A.
                     61: *          On exit, the upper triangular part of the array A contains
                     62: *          the M-by-M upper triangular matrix R.
                     63: *
                     64: *  LDA     (input) INTEGER
                     65: *          The leading dimension of the array A. LDA >= max(1,N).
                     66: *
                     67: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,P)
                     68: *          On entry, the N-by-P matrix B.
                     69: *          On exit, if N <= P, the upper triangle of the subarray
                     70: *          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
                     71: *          if N > P, the elements on and above the (N-P)th subdiagonal
                     72: *          contain the N-by-P upper trapezoidal matrix T.
                     73: *
                     74: *  LDB     (input) INTEGER
                     75: *          The leading dimension of the array B. LDB >= max(1,N).
                     76: *
                     77: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
                     78: *          On entry, D is the left hand side of the GLM equation.
                     79: *          On exit, D is destroyed.
                     80: *
                     81: *  X       (output) DOUBLE PRECISION array, dimension (M)
                     82: *  Y       (output) DOUBLE PRECISION array, dimension (P)
                     83: *          On exit, X and Y are the solutions of the GLM problem.
                     84: *
                     85: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     86: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     87: *
                     88: *  LWORK   (input) INTEGER
                     89: *          The dimension of the array WORK. LWORK >= max(1,N+M+P).
                     90: *          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
                     91: *          where NB is an upper bound for the optimal blocksizes for
                     92: *          DGEQRF, SGERQF, DORMQR and SORMRQ.
                     93: *
                     94: *          If LWORK = -1, then a workspace query is assumed; the routine
                     95: *          only calculates the optimal size of the WORK array, returns
                     96: *          this value as the first entry of the WORK array, and no error
                     97: *          message related to LWORK is issued by XERBLA.
                     98: *
                     99: *  INFO    (output) INTEGER
                    100: *          = 0:  successful exit.
                    101: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    102: *          = 1:  the upper triangular factor R associated with A in the
                    103: *                generalized QR factorization of the pair (A, B) is
                    104: *                singular, so that rank(A) < M; the least squares
                    105: *                solution could not be computed.
                    106: *          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
                    107: *                factor T associated with B in the generalized QR
                    108: *                factorization of the pair (A, B) is singular, so that
                    109: *                rank( A B ) < N; the least squares solution could not
                    110: *                be computed.
                    111: *
                    112: *  ===================================================================
                    113: *
                    114: *     .. Parameters ..
                    115:       DOUBLE PRECISION   ZERO, ONE
                    116:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    117: *     ..
                    118: *     .. Local Scalars ..
                    119:       LOGICAL            LQUERY
                    120:       INTEGER            I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
                    121:      $                   NB4, NP
                    122: *     ..
                    123: *     .. External Subroutines ..
                    124:       EXTERNAL           DCOPY, DGEMV, DGGQRF, DORMQR, DORMRQ, DTRTRS,
                    125:      $                   XERBLA
                    126: *     ..
                    127: *     .. External Functions ..
                    128:       INTEGER            ILAENV
                    129:       EXTERNAL           ILAENV
                    130: *     ..
                    131: *     .. Intrinsic Functions ..
                    132:       INTRINSIC          INT, MAX, MIN
                    133: *     ..
                    134: *     .. Executable Statements ..
                    135: *
                    136: *     Test the input parameters
                    137: *
                    138:       INFO = 0
                    139:       NP = MIN( N, P )
                    140:       LQUERY = ( LWORK.EQ.-1 )
                    141:       IF( N.LT.0 ) THEN
                    142:          INFO = -1
                    143:       ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
                    144:          INFO = -2
                    145:       ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
                    146:          INFO = -3
                    147:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    148:          INFO = -5
                    149:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    150:          INFO = -7
                    151:       END IF
                    152: *
                    153: *     Calculate workspace
                    154: *
                    155:       IF( INFO.EQ.0) THEN
                    156:          IF( N.EQ.0 ) THEN
                    157:             LWKMIN = 1
                    158:             LWKOPT = 1
                    159:          ELSE
                    160:             NB1 = ILAENV( 1, 'DGEQRF', ' ', N, M, -1, -1 )
                    161:             NB2 = ILAENV( 1, 'DGERQF', ' ', N, M, -1, -1 )
                    162:             NB3 = ILAENV( 1, 'DORMQR', ' ', N, M, P, -1 )
                    163:             NB4 = ILAENV( 1, 'DORMRQ', ' ', N, M, P, -1 )
                    164:             NB = MAX( NB1, NB2, NB3, NB4 )
                    165:             LWKMIN = M + N + P
                    166:             LWKOPT = M + NP + MAX( N, P )*NB
                    167:          END IF
                    168:          WORK( 1 ) = LWKOPT
                    169: *
                    170:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    171:             INFO = -12
                    172:          END IF
                    173:       END IF
                    174: *
                    175:       IF( INFO.NE.0 ) THEN
                    176:          CALL XERBLA( 'DGGGLM', -INFO )
                    177:          RETURN
                    178:       ELSE IF( LQUERY ) THEN
                    179:          RETURN
                    180:       END IF
                    181: *
                    182: *     Quick return if possible
                    183: *
                    184:       IF( N.EQ.0 )
                    185:      $   RETURN
                    186: *
                    187: *     Compute the GQR factorization of matrices A and B:
                    188: *
                    189: *            Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M
                    190: *                   (  0  ) N-M             (  0    T22 ) N-M
                    191: *                      M                     M+P-N  N-M
                    192: *
                    193: *     where R11 and T22 are upper triangular, and Q and Z are
                    194: *     orthogonal.
                    195: *
                    196:       CALL DGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
                    197:      $             WORK( M+NP+1 ), LWORK-M-NP, INFO )
                    198:       LOPT = WORK( M+NP+1 )
                    199: *
                    200: *     Update left-hand-side vector d = Q'*d = ( d1 ) M
                    201: *                                             ( d2 ) N-M
                    202: *
                    203:       CALL DORMQR( 'Left', 'Transpose', N, 1, M, A, LDA, WORK, D,
                    204:      $             MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
                    205:       LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
                    206: *
                    207: *     Solve T22*y2 = d2 for y2
                    208: *
                    209:       IF( N.GT.M ) THEN
                    210:          CALL DTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
                    211:      $                B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
                    212: *
                    213:          IF( INFO.GT.0 ) THEN
                    214:             INFO = 1
                    215:             RETURN
                    216:          END IF
                    217: *
                    218:          CALL DCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
                    219:       END IF
                    220: *
                    221: *     Set y1 = 0
                    222: *
                    223:       DO 10 I = 1, M + P - N
                    224:          Y( I ) = ZERO
                    225:    10 CONTINUE
                    226: *
                    227: *     Update d1 = d1 - T12*y2
                    228: *
                    229:       CALL DGEMV( 'No transpose', M, N-M, -ONE, B( 1, M+P-N+1 ), LDB,
                    230:      $            Y( M+P-N+1 ), 1, ONE, D, 1 )
                    231: *
                    232: *     Solve triangular system: R11*x = d1
                    233: *
                    234:       IF( M.GT.0 ) THEN
                    235:          CALL DTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
                    236:      $                D, M, INFO )
                    237: *
                    238:          IF( INFO.GT.0 ) THEN
                    239:             INFO = 2
                    240:             RETURN
                    241:          END IF
                    242: *
                    243: *        Copy D to X
                    244: *
                    245:          CALL DCOPY( M, D, 1, X, 1 )
                    246:       END IF
                    247: *
                    248: *     Backward transformation y = Z'*y
                    249: *
                    250:       CALL DORMRQ( 'Left', 'Transpose', P, 1, NP,
                    251:      $             B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
                    252:      $             MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
                    253:       WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
                    254: *
                    255:       RETURN
                    256: *
                    257: *     End of DGGGLM
                    258: *
                    259:       END

CVSweb interface <joel.bertrand@systella.fr>