Annotation of rpl/lapack/lapack/dggglm.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
        !             2:      $                   INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
        !            14:      $                   X( * ), Y( * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
        !            21: *
        !            22: *          minimize || y ||_2   subject to   d = A*x + B*y
        !            23: *              x
        !            24: *
        !            25: *  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
        !            26: *  given N-vector. It is assumed that M <= N <= M+P, and
        !            27: *
        !            28: *             rank(A) = M    and    rank( A B ) = N.
        !            29: *
        !            30: *  Under these assumptions, the constrained equation is always
        !            31: *  consistent, and there is a unique solution x and a minimal 2-norm
        !            32: *  solution y, which is obtained using a generalized QR factorization
        !            33: *  of the matrices (A, B) given by
        !            34: *
        !            35: *     A = Q*(R),   B = Q*T*Z.
        !            36: *           (0)
        !            37: *
        !            38: *  In particular, if matrix B is square nonsingular, then the problem
        !            39: *  GLM is equivalent to the following weighted linear least squares
        !            40: *  problem
        !            41: *
        !            42: *               minimize || inv(B)*(d-A*x) ||_2
        !            43: *                   x
        !            44: *
        !            45: *  where inv(B) denotes the inverse of B.
        !            46: *
        !            47: *  Arguments
        !            48: *  =========
        !            49: *
        !            50: *  N       (input) INTEGER
        !            51: *          The number of rows of the matrices A and B.  N >= 0.
        !            52: *
        !            53: *  M       (input) INTEGER
        !            54: *          The number of columns of the matrix A.  0 <= M <= N.
        !            55: *
        !            56: *  P       (input) INTEGER
        !            57: *          The number of columns of the matrix B.  P >= N-M.
        !            58: *
        !            59: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,M)
        !            60: *          On entry, the N-by-M matrix A.
        !            61: *          On exit, the upper triangular part of the array A contains
        !            62: *          the M-by-M upper triangular matrix R.
        !            63: *
        !            64: *  LDA     (input) INTEGER
        !            65: *          The leading dimension of the array A. LDA >= max(1,N).
        !            66: *
        !            67: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,P)
        !            68: *          On entry, the N-by-P matrix B.
        !            69: *          On exit, if N <= P, the upper triangle of the subarray
        !            70: *          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
        !            71: *          if N > P, the elements on and above the (N-P)th subdiagonal
        !            72: *          contain the N-by-P upper trapezoidal matrix T.
        !            73: *
        !            74: *  LDB     (input) INTEGER
        !            75: *          The leading dimension of the array B. LDB >= max(1,N).
        !            76: *
        !            77: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
        !            78: *          On entry, D is the left hand side of the GLM equation.
        !            79: *          On exit, D is destroyed.
        !            80: *
        !            81: *  X       (output) DOUBLE PRECISION array, dimension (M)
        !            82: *  Y       (output) DOUBLE PRECISION array, dimension (P)
        !            83: *          On exit, X and Y are the solutions of the GLM problem.
        !            84: *
        !            85: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            86: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            87: *
        !            88: *  LWORK   (input) INTEGER
        !            89: *          The dimension of the array WORK. LWORK >= max(1,N+M+P).
        !            90: *          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
        !            91: *          where NB is an upper bound for the optimal blocksizes for
        !            92: *          DGEQRF, SGERQF, DORMQR and SORMRQ.
        !            93: *
        !            94: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            95: *          only calculates the optimal size of the WORK array, returns
        !            96: *          this value as the first entry of the WORK array, and no error
        !            97: *          message related to LWORK is issued by XERBLA.
        !            98: *
        !            99: *  INFO    (output) INTEGER
        !           100: *          = 0:  successful exit.
        !           101: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           102: *          = 1:  the upper triangular factor R associated with A in the
        !           103: *                generalized QR factorization of the pair (A, B) is
        !           104: *                singular, so that rank(A) < M; the least squares
        !           105: *                solution could not be computed.
        !           106: *          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
        !           107: *                factor T associated with B in the generalized QR
        !           108: *                factorization of the pair (A, B) is singular, so that
        !           109: *                rank( A B ) < N; the least squares solution could not
        !           110: *                be computed.
        !           111: *
        !           112: *  ===================================================================
        !           113: *
        !           114: *     .. Parameters ..
        !           115:       DOUBLE PRECISION   ZERO, ONE
        !           116:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           117: *     ..
        !           118: *     .. Local Scalars ..
        !           119:       LOGICAL            LQUERY
        !           120:       INTEGER            I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
        !           121:      $                   NB4, NP
        !           122: *     ..
        !           123: *     .. External Subroutines ..
        !           124:       EXTERNAL           DCOPY, DGEMV, DGGQRF, DORMQR, DORMRQ, DTRTRS,
        !           125:      $                   XERBLA
        !           126: *     ..
        !           127: *     .. External Functions ..
        !           128:       INTEGER            ILAENV
        !           129:       EXTERNAL           ILAENV
        !           130: *     ..
        !           131: *     .. Intrinsic Functions ..
        !           132:       INTRINSIC          INT, MAX, MIN
        !           133: *     ..
        !           134: *     .. Executable Statements ..
        !           135: *
        !           136: *     Test the input parameters
        !           137: *
        !           138:       INFO = 0
        !           139:       NP = MIN( N, P )
        !           140:       LQUERY = ( LWORK.EQ.-1 )
        !           141:       IF( N.LT.0 ) THEN
        !           142:          INFO = -1
        !           143:       ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
        !           144:          INFO = -2
        !           145:       ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
        !           146:          INFO = -3
        !           147:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           148:          INFO = -5
        !           149:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           150:          INFO = -7
        !           151:       END IF
        !           152: *
        !           153: *     Calculate workspace
        !           154: *
        !           155:       IF( INFO.EQ.0) THEN
        !           156:          IF( N.EQ.0 ) THEN
        !           157:             LWKMIN = 1
        !           158:             LWKOPT = 1
        !           159:          ELSE
        !           160:             NB1 = ILAENV( 1, 'DGEQRF', ' ', N, M, -1, -1 )
        !           161:             NB2 = ILAENV( 1, 'DGERQF', ' ', N, M, -1, -1 )
        !           162:             NB3 = ILAENV( 1, 'DORMQR', ' ', N, M, P, -1 )
        !           163:             NB4 = ILAENV( 1, 'DORMRQ', ' ', N, M, P, -1 )
        !           164:             NB = MAX( NB1, NB2, NB3, NB4 )
        !           165:             LWKMIN = M + N + P
        !           166:             LWKOPT = M + NP + MAX( N, P )*NB
        !           167:          END IF
        !           168:          WORK( 1 ) = LWKOPT
        !           169: *
        !           170:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
        !           171:             INFO = -12
        !           172:          END IF
        !           173:       END IF
        !           174: *
        !           175:       IF( INFO.NE.0 ) THEN
        !           176:          CALL XERBLA( 'DGGGLM', -INFO )
        !           177:          RETURN
        !           178:       ELSE IF( LQUERY ) THEN
        !           179:          RETURN
        !           180:       END IF
        !           181: *
        !           182: *     Quick return if possible
        !           183: *
        !           184:       IF( N.EQ.0 )
        !           185:      $   RETURN
        !           186: *
        !           187: *     Compute the GQR factorization of matrices A and B:
        !           188: *
        !           189: *            Q'*A = ( R11 ) M,    Q'*B*Z' = ( T11   T12 ) M
        !           190: *                   (  0  ) N-M             (  0    T22 ) N-M
        !           191: *                      M                     M+P-N  N-M
        !           192: *
        !           193: *     where R11 and T22 are upper triangular, and Q and Z are
        !           194: *     orthogonal.
        !           195: *
        !           196:       CALL DGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
        !           197:      $             WORK( M+NP+1 ), LWORK-M-NP, INFO )
        !           198:       LOPT = WORK( M+NP+1 )
        !           199: *
        !           200: *     Update left-hand-side vector d = Q'*d = ( d1 ) M
        !           201: *                                             ( d2 ) N-M
        !           202: *
        !           203:       CALL DORMQR( 'Left', 'Transpose', N, 1, M, A, LDA, WORK, D,
        !           204:      $             MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
        !           205:       LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
        !           206: *
        !           207: *     Solve T22*y2 = d2 for y2
        !           208: *
        !           209:       IF( N.GT.M ) THEN
        !           210:          CALL DTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
        !           211:      $                B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
        !           212: *
        !           213:          IF( INFO.GT.0 ) THEN
        !           214:             INFO = 1
        !           215:             RETURN
        !           216:          END IF
        !           217: *
        !           218:          CALL DCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
        !           219:       END IF
        !           220: *
        !           221: *     Set y1 = 0
        !           222: *
        !           223:       DO 10 I = 1, M + P - N
        !           224:          Y( I ) = ZERO
        !           225:    10 CONTINUE
        !           226: *
        !           227: *     Update d1 = d1 - T12*y2
        !           228: *
        !           229:       CALL DGEMV( 'No transpose', M, N-M, -ONE, B( 1, M+P-N+1 ), LDB,
        !           230:      $            Y( M+P-N+1 ), 1, ONE, D, 1 )
        !           231: *
        !           232: *     Solve triangular system: R11*x = d1
        !           233: *
        !           234:       IF( M.GT.0 ) THEN
        !           235:          CALL DTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
        !           236:      $                D, M, INFO )
        !           237: *
        !           238:          IF( INFO.GT.0 ) THEN
        !           239:             INFO = 2
        !           240:             RETURN
        !           241:          END IF
        !           242: *
        !           243: *        Copy D to X
        !           244: *
        !           245:          CALL DCOPY( M, D, 1, X, 1 )
        !           246:       END IF
        !           247: *
        !           248: *     Backward transformation y = Z'*y
        !           249: *
        !           250:       CALL DORMRQ( 'Left', 'Transpose', P, 1, NP,
        !           251:      $             B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
        !           252:      $             MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
        !           253:       WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
        !           254: *
        !           255:       RETURN
        !           256: *
        !           257: *     End of DGGGLM
        !           258: *
        !           259:       END

CVSweb interface <joel.bertrand@systella.fr>