File:  [local] / rpl / lapack / lapack / dggevx.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:14 2012 UTC (11 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief <b> DGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGGEVX + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggevx.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggevx.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggevx.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
   22: *                          ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
   23: *                          IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
   24: *                          RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
   28: *       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   29: *       DOUBLE PRECISION   ABNRM, BBNRM
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       LOGICAL            BWORK( * )
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   35: *      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
   36: *      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
   37: *      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
   38: *       ..
   39: *  
   40: *
   41: *> \par Purpose:
   42: *  =============
   43: *>
   44: *> \verbatim
   45: *>
   46: *> DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
   47: *> the generalized eigenvalues, and optionally, the left and/or right
   48: *> generalized eigenvectors.
   49: *>
   50: *> Optionally also, it computes a balancing transformation to improve
   51: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
   52: *> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
   53: *> the eigenvalues (RCONDE), and reciprocal condition numbers for the
   54: *> right eigenvectors (RCONDV).
   55: *>
   56: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
   57: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
   58: *> singular. It is usually represented as the pair (alpha,beta), as
   59: *> there is a reasonable interpretation for beta=0, and even for both
   60: *> being zero.
   61: *>
   62: *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
   63: *> of (A,B) satisfies
   64: *>
   65: *>                  A * v(j) = lambda(j) * B * v(j) .
   66: *>
   67: *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
   68: *> of (A,B) satisfies
   69: *>
   70: *>                  u(j)**H * A  = lambda(j) * u(j)**H * B.
   71: *>
   72: *> where u(j)**H is the conjugate-transpose of u(j).
   73: *>
   74: *> \endverbatim
   75: *
   76: *  Arguments:
   77: *  ==========
   78: *
   79: *> \param[in] BALANC
   80: *> \verbatim
   81: *>          BALANC is CHARACTER*1
   82: *>          Specifies the balance option to be performed.
   83: *>          = 'N':  do not diagonally scale or permute;
   84: *>          = 'P':  permute only;
   85: *>          = 'S':  scale only;
   86: *>          = 'B':  both permute and scale.
   87: *>          Computed reciprocal condition numbers will be for the
   88: *>          matrices after permuting and/or balancing. Permuting does
   89: *>          not change condition numbers (in exact arithmetic), but
   90: *>          balancing does.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] JOBVL
   94: *> \verbatim
   95: *>          JOBVL is CHARACTER*1
   96: *>          = 'N':  do not compute the left generalized eigenvectors;
   97: *>          = 'V':  compute the left generalized eigenvectors.
   98: *> \endverbatim
   99: *>
  100: *> \param[in] JOBVR
  101: *> \verbatim
  102: *>          JOBVR is CHARACTER*1
  103: *>          = 'N':  do not compute the right generalized eigenvectors;
  104: *>          = 'V':  compute the right generalized eigenvectors.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] SENSE
  108: *> \verbatim
  109: *>          SENSE is CHARACTER*1
  110: *>          Determines which reciprocal condition numbers are computed.
  111: *>          = 'N': none are computed;
  112: *>          = 'E': computed for eigenvalues only;
  113: *>          = 'V': computed for eigenvectors only;
  114: *>          = 'B': computed for eigenvalues and eigenvectors.
  115: *> \endverbatim
  116: *>
  117: *> \param[in] N
  118: *> \verbatim
  119: *>          N is INTEGER
  120: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] A
  124: *> \verbatim
  125: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
  126: *>          On entry, the matrix A in the pair (A,B).
  127: *>          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
  128: *>          or both, then A contains the first part of the real Schur
  129: *>          form of the "balanced" versions of the input A and B.
  130: *> \endverbatim
  131: *>
  132: *> \param[in] LDA
  133: *> \verbatim
  134: *>          LDA is INTEGER
  135: *>          The leading dimension of A.  LDA >= max(1,N).
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] B
  139: *> \verbatim
  140: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
  141: *>          On entry, the matrix B in the pair (A,B).
  142: *>          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
  143: *>          or both, then B contains the second part of the real Schur
  144: *>          form of the "balanced" versions of the input A and B.
  145: *> \endverbatim
  146: *>
  147: *> \param[in] LDB
  148: *> \verbatim
  149: *>          LDB is INTEGER
  150: *>          The leading dimension of B.  LDB >= max(1,N).
  151: *> \endverbatim
  152: *>
  153: *> \param[out] ALPHAR
  154: *> \verbatim
  155: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
  156: *> \endverbatim
  157: *>
  158: *> \param[out] ALPHAI
  159: *> \verbatim
  160: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
  161: *> \endverbatim
  162: *>
  163: *> \param[out] BETA
  164: *> \verbatim
  165: *>          BETA is DOUBLE PRECISION array, dimension (N)
  166: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  167: *>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
  168: *>          the j-th eigenvalue is real; if positive, then the j-th and
  169: *>          (j+1)-st eigenvalues are a complex conjugate pair, with
  170: *>          ALPHAI(j+1) negative.
  171: *>
  172: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
  173: *>          may easily over- or underflow, and BETA(j) may even be zero.
  174: *>          Thus, the user should avoid naively computing the ratio
  175: *>          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
  176: *>          than and usually comparable with norm(A) in magnitude, and
  177: *>          BETA always less than and usually comparable with norm(B).
  178: *> \endverbatim
  179: *>
  180: *> \param[out] VL
  181: *> \verbatim
  182: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
  183: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  184: *>          after another in the columns of VL, in the same order as
  185: *>          their eigenvalues. If the j-th eigenvalue is real, then
  186: *>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
  187: *>          (j+1)-th eigenvalues form a complex conjugate pair, then
  188: *>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
  189: *>          Each eigenvector will be scaled so the largest component have
  190: *>          abs(real part) + abs(imag. part) = 1.
  191: *>          Not referenced if JOBVL = 'N'.
  192: *> \endverbatim
  193: *>
  194: *> \param[in] LDVL
  195: *> \verbatim
  196: *>          LDVL is INTEGER
  197: *>          The leading dimension of the matrix VL. LDVL >= 1, and
  198: *>          if JOBVL = 'V', LDVL >= N.
  199: *> \endverbatim
  200: *>
  201: *> \param[out] VR
  202: *> \verbatim
  203: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
  204: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  205: *>          after another in the columns of VR, in the same order as
  206: *>          their eigenvalues. If the j-th eigenvalue is real, then
  207: *>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
  208: *>          (j+1)-th eigenvalues form a complex conjugate pair, then
  209: *>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
  210: *>          Each eigenvector will be scaled so the largest component have
  211: *>          abs(real part) + abs(imag. part) = 1.
  212: *>          Not referenced if JOBVR = 'N'.
  213: *> \endverbatim
  214: *>
  215: *> \param[in] LDVR
  216: *> \verbatim
  217: *>          LDVR is INTEGER
  218: *>          The leading dimension of the matrix VR. LDVR >= 1, and
  219: *>          if JOBVR = 'V', LDVR >= N.
  220: *> \endverbatim
  221: *>
  222: *> \param[out] ILO
  223: *> \verbatim
  224: *>          ILO is INTEGER
  225: *> \endverbatim
  226: *>
  227: *> \param[out] IHI
  228: *> \verbatim
  229: *>          IHI is INTEGER
  230: *>          ILO and IHI are integer values such that on exit
  231: *>          A(i,j) = 0 and B(i,j) = 0 if i > j and
  232: *>          j = 1,...,ILO-1 or i = IHI+1,...,N.
  233: *>          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
  234: *> \endverbatim
  235: *>
  236: *> \param[out] LSCALE
  237: *> \verbatim
  238: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
  239: *>          Details of the permutations and scaling factors applied
  240: *>          to the left side of A and B.  If PL(j) is the index of the
  241: *>          row interchanged with row j, and DL(j) is the scaling
  242: *>          factor applied to row j, then
  243: *>            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
  244: *>                      = DL(j)  for j = ILO,...,IHI
  245: *>                      = PL(j)  for j = IHI+1,...,N.
  246: *>          The order in which the interchanges are made is N to IHI+1,
  247: *>          then 1 to ILO-1.
  248: *> \endverbatim
  249: *>
  250: *> \param[out] RSCALE
  251: *> \verbatim
  252: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
  253: *>          Details of the permutations and scaling factors applied
  254: *>          to the right side of A and B.  If PR(j) is the index of the
  255: *>          column interchanged with column j, and DR(j) is the scaling
  256: *>          factor applied to column j, then
  257: *>            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
  258: *>                      = DR(j)  for j = ILO,...,IHI
  259: *>                      = PR(j)  for j = IHI+1,...,N
  260: *>          The order in which the interchanges are made is N to IHI+1,
  261: *>          then 1 to ILO-1.
  262: *> \endverbatim
  263: *>
  264: *> \param[out] ABNRM
  265: *> \verbatim
  266: *>          ABNRM is DOUBLE PRECISION
  267: *>          The one-norm of the balanced matrix A.
  268: *> \endverbatim
  269: *>
  270: *> \param[out] BBNRM
  271: *> \verbatim
  272: *>          BBNRM is DOUBLE PRECISION
  273: *>          The one-norm of the balanced matrix B.
  274: *> \endverbatim
  275: *>
  276: *> \param[out] RCONDE
  277: *> \verbatim
  278: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
  279: *>          If SENSE = 'E' or 'B', the reciprocal condition numbers of
  280: *>          the eigenvalues, stored in consecutive elements of the array.
  281: *>          For a complex conjugate pair of eigenvalues two consecutive
  282: *>          elements of RCONDE are set to the same value. Thus RCONDE(j),
  283: *>          RCONDV(j), and the j-th columns of VL and VR all correspond
  284: *>          to the j-th eigenpair.
  285: *>          If SENSE = 'N or 'V', RCONDE is not referenced.
  286: *> \endverbatim
  287: *>
  288: *> \param[out] RCONDV
  289: *> \verbatim
  290: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
  291: *>          If SENSE = 'V' or 'B', the estimated reciprocal condition
  292: *>          numbers of the eigenvectors, stored in consecutive elements
  293: *>          of the array. For a complex eigenvector two consecutive
  294: *>          elements of RCONDV are set to the same value. If the
  295: *>          eigenvalues cannot be reordered to compute RCONDV(j),
  296: *>          RCONDV(j) is set to 0; this can only occur when the true
  297: *>          value would be very small anyway.
  298: *>          If SENSE = 'N' or 'E', RCONDV is not referenced.
  299: *> \endverbatim
  300: *>
  301: *> \param[out] WORK
  302: *> \verbatim
  303: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  304: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  305: *> \endverbatim
  306: *>
  307: *> \param[in] LWORK
  308: *> \verbatim
  309: *>          LWORK is INTEGER
  310: *>          The dimension of the array WORK. LWORK >= max(1,2*N).
  311: *>          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
  312: *>          LWORK >= max(1,6*N).
  313: *>          If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
  314: *>          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
  315: *>
  316: *>          If LWORK = -1, then a workspace query is assumed; the routine
  317: *>          only calculates the optimal size of the WORK array, returns
  318: *>          this value as the first entry of the WORK array, and no error
  319: *>          message related to LWORK is issued by XERBLA.
  320: *> \endverbatim
  321: *>
  322: *> \param[out] IWORK
  323: *> \verbatim
  324: *>          IWORK is INTEGER array, dimension (N+6)
  325: *>          If SENSE = 'E', IWORK is not referenced.
  326: *> \endverbatim
  327: *>
  328: *> \param[out] BWORK
  329: *> \verbatim
  330: *>          BWORK is LOGICAL array, dimension (N)
  331: *>          If SENSE = 'N', BWORK is not referenced.
  332: *> \endverbatim
  333: *>
  334: *> \param[out] INFO
  335: *> \verbatim
  336: *>          INFO is INTEGER
  337: *>          = 0:  successful exit
  338: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  339: *>          = 1,...,N:
  340: *>                The QZ iteration failed.  No eigenvectors have been
  341: *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
  342: *>                should be correct for j=INFO+1,...,N.
  343: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
  344: *>                =N+2: error return from DTGEVC.
  345: *> \endverbatim
  346: *
  347: *  Authors:
  348: *  ========
  349: *
  350: *> \author Univ. of Tennessee 
  351: *> \author Univ. of California Berkeley 
  352: *> \author Univ. of Colorado Denver 
  353: *> \author NAG Ltd. 
  354: *
  355: *> \date April 2012
  356: *
  357: *> \ingroup doubleGEeigen
  358: *
  359: *> \par Further Details:
  360: *  =====================
  361: *>
  362: *> \verbatim
  363: *>
  364: *>  Balancing a matrix pair (A,B) includes, first, permuting rows and
  365: *>  columns to isolate eigenvalues, second, applying diagonal similarity
  366: *>  transformation to the rows and columns to make the rows and columns
  367: *>  as close in norm as possible. The computed reciprocal condition
  368: *>  numbers correspond to the balanced matrix. Permuting rows and columns
  369: *>  will not change the condition numbers (in exact arithmetic) but
  370: *>  diagonal scaling will.  For further explanation of balancing, see
  371: *>  section 4.11.1.2 of LAPACK Users' Guide.
  372: *>
  373: *>  An approximate error bound on the chordal distance between the i-th
  374: *>  computed generalized eigenvalue w and the corresponding exact
  375: *>  eigenvalue lambda is
  376: *>
  377: *>       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
  378: *>
  379: *>  An approximate error bound for the angle between the i-th computed
  380: *>  eigenvector VL(i) or VR(i) is given by
  381: *>
  382: *>       EPS * norm(ABNRM, BBNRM) / DIF(i).
  383: *>
  384: *>  For further explanation of the reciprocal condition numbers RCONDE
  385: *>  and RCONDV, see section 4.11 of LAPACK User's Guide.
  386: *> \endverbatim
  387: *>
  388: *  =====================================================================
  389:       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
  390:      $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
  391:      $                   IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
  392:      $                   RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
  393: *
  394: *  -- LAPACK driver routine (version 3.4.1) --
  395: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  396: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  397: *     April 2012
  398: *
  399: *     .. Scalar Arguments ..
  400:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
  401:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
  402:       DOUBLE PRECISION   ABNRM, BBNRM
  403: *     ..
  404: *     .. Array Arguments ..
  405:       LOGICAL            BWORK( * )
  406:       INTEGER            IWORK( * )
  407:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  408:      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
  409:      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
  410:      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
  411: *     ..
  412: *
  413: *  =====================================================================
  414: *
  415: *     .. Parameters ..
  416:       DOUBLE PRECISION   ZERO, ONE
  417:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  418: *     ..
  419: *     .. Local Scalars ..
  420:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
  421:      $                   PAIR, WANTSB, WANTSE, WANTSN, WANTSV
  422:       CHARACTER          CHTEMP
  423:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
  424:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK,
  425:      $                   MINWRK, MM
  426:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  427:      $                   SMLNUM, TEMP
  428: *     ..
  429: *     .. Local Arrays ..
  430:       LOGICAL            LDUMMA( 1 )
  431: *     ..
  432: *     .. External Subroutines ..
  433:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
  434:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
  435:      $                   DTGSNA, XERBLA 
  436: *     ..
  437: *     .. External Functions ..
  438:       LOGICAL            LSAME
  439:       INTEGER            ILAENV
  440:       DOUBLE PRECISION   DLAMCH, DLANGE
  441:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  442: *     ..
  443: *     .. Intrinsic Functions ..
  444:       INTRINSIC          ABS, MAX, SQRT
  445: *     ..
  446: *     .. Executable Statements ..
  447: *
  448: *     Decode the input arguments
  449: *
  450:       IF( LSAME( JOBVL, 'N' ) ) THEN
  451:          IJOBVL = 1
  452:          ILVL = .FALSE.
  453:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  454:          IJOBVL = 2
  455:          ILVL = .TRUE.
  456:       ELSE
  457:          IJOBVL = -1
  458:          ILVL = .FALSE.
  459:       END IF
  460: *
  461:       IF( LSAME( JOBVR, 'N' ) ) THEN
  462:          IJOBVR = 1
  463:          ILVR = .FALSE.
  464:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  465:          IJOBVR = 2
  466:          ILVR = .TRUE.
  467:       ELSE
  468:          IJOBVR = -1
  469:          ILVR = .FALSE.
  470:       END IF
  471:       ILV = ILVL .OR. ILVR
  472: *
  473:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
  474:       WANTSN = LSAME( SENSE, 'N' )
  475:       WANTSE = LSAME( SENSE, 'E' )
  476:       WANTSV = LSAME( SENSE, 'V' )
  477:       WANTSB = LSAME( SENSE, 'B' )
  478: *
  479: *     Test the input arguments
  480: *
  481:       INFO = 0
  482:       LQUERY = ( LWORK.EQ.-1 )
  483:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
  484:      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
  485:      $     THEN
  486:          INFO = -1
  487:       ELSE IF( IJOBVL.LE.0 ) THEN
  488:          INFO = -2
  489:       ELSE IF( IJOBVR.LE.0 ) THEN
  490:          INFO = -3
  491:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
  492:      $          THEN
  493:          INFO = -4
  494:       ELSE IF( N.LT.0 ) THEN
  495:          INFO = -5
  496:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  497:          INFO = -7
  498:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  499:          INFO = -9
  500:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  501:          INFO = -14
  502:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  503:          INFO = -16
  504:       END IF
  505: *
  506: *     Compute workspace
  507: *      (Note: Comments in the code beginning "Workspace:" describe the
  508: *       minimal amount of workspace needed at that point in the code,
  509: *       as well as the preferred amount for good performance.
  510: *       NB refers to the optimal block size for the immediately
  511: *       following subroutine, as returned by ILAENV. The workspace is
  512: *       computed assuming ILO = 1 and IHI = N, the worst case.)
  513: *
  514:       IF( INFO.EQ.0 ) THEN
  515:          IF( N.EQ.0 ) THEN
  516:             MINWRK = 1
  517:             MAXWRK = 1
  518:          ELSE
  519:             IF( NOSCL .AND. .NOT.ILV ) THEN
  520:                MINWRK = 2*N
  521:             ELSE
  522:                MINWRK = 6*N
  523:             END IF
  524:             IF( WANTSE .OR. WANTSB ) THEN
  525:                MINWRK = 10*N
  526:             END IF
  527:             IF( WANTSV .OR. WANTSB ) THEN
  528:                MINWRK = MAX( MINWRK, 2*N*( N + 4 ) + 16 )
  529:             END IF
  530:             MAXWRK = MINWRK
  531:             MAXWRK = MAX( MAXWRK,
  532:      $                    N + N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) )
  533:             MAXWRK = MAX( MAXWRK,
  534:      $                    N + N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) )
  535:             IF( ILVL ) THEN
  536:                MAXWRK = MAX( MAXWRK, N +
  537:      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, 0 ) )
  538:             END IF
  539:          END IF
  540:          WORK( 1 ) = MAXWRK
  541: *
  542:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  543:             INFO = -26
  544:          END IF
  545:       END IF
  546: *
  547:       IF( INFO.NE.0 ) THEN
  548:          CALL XERBLA( 'DGGEVX', -INFO )
  549:          RETURN
  550:       ELSE IF( LQUERY ) THEN
  551:          RETURN
  552:       END IF
  553: *
  554: *     Quick return if possible
  555: *
  556:       IF( N.EQ.0 )
  557:      $   RETURN
  558: *
  559: *
  560: *     Get machine constants
  561: *
  562:       EPS = DLAMCH( 'P' )
  563:       SMLNUM = DLAMCH( 'S' )
  564:       BIGNUM = ONE / SMLNUM
  565:       CALL DLABAD( SMLNUM, BIGNUM )
  566:       SMLNUM = SQRT( SMLNUM ) / EPS
  567:       BIGNUM = ONE / SMLNUM
  568: *
  569: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  570: *
  571:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  572:       ILASCL = .FALSE.
  573:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  574:          ANRMTO = SMLNUM
  575:          ILASCL = .TRUE.
  576:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  577:          ANRMTO = BIGNUM
  578:          ILASCL = .TRUE.
  579:       END IF
  580:       IF( ILASCL )
  581:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  582: *
  583: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  584: *
  585:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  586:       ILBSCL = .FALSE.
  587:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  588:          BNRMTO = SMLNUM
  589:          ILBSCL = .TRUE.
  590:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  591:          BNRMTO = BIGNUM
  592:          ILBSCL = .TRUE.
  593:       END IF
  594:       IF( ILBSCL )
  595:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  596: *
  597: *     Permute and/or balance the matrix pair (A,B)
  598: *     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
  599: *
  600:       CALL DGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
  601:      $             WORK, IERR )
  602: *
  603: *     Compute ABNRM and BBNRM
  604: *
  605:       ABNRM = DLANGE( '1', N, N, A, LDA, WORK( 1 ) )
  606:       IF( ILASCL ) THEN
  607:          WORK( 1 ) = ABNRM
  608:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1,
  609:      $                IERR )
  610:          ABNRM = WORK( 1 )
  611:       END IF
  612: *
  613:       BBNRM = DLANGE( '1', N, N, B, LDB, WORK( 1 ) )
  614:       IF( ILBSCL ) THEN
  615:          WORK( 1 ) = BBNRM
  616:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1,
  617:      $                IERR )
  618:          BBNRM = WORK( 1 )
  619:       END IF
  620: *
  621: *     Reduce B to triangular form (QR decomposition of B)
  622: *     (Workspace: need N, prefer N*NB )
  623: *
  624:       IROWS = IHI + 1 - ILO
  625:       IF( ILV .OR. .NOT.WANTSN ) THEN
  626:          ICOLS = N + 1 - ILO
  627:       ELSE
  628:          ICOLS = IROWS
  629:       END IF
  630:       ITAU = 1
  631:       IWRK = ITAU + IROWS
  632:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  633:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  634: *
  635: *     Apply the orthogonal transformation to A
  636: *     (Workspace: need N, prefer N*NB)
  637: *
  638:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  639:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  640:      $             LWORK+1-IWRK, IERR )
  641: *
  642: *     Initialize VL and/or VR
  643: *     (Workspace: need N, prefer N*NB)
  644: *
  645:       IF( ILVL ) THEN
  646:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
  647:          IF( IROWS.GT.1 ) THEN
  648:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  649:      $                   VL( ILO+1, ILO ), LDVL )
  650:          END IF
  651:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  652:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  653:       END IF
  654: *
  655:       IF( ILVR )
  656:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
  657: *
  658: *     Reduce to generalized Hessenberg form
  659: *     (Workspace: none needed)
  660: *
  661:       IF( ILV .OR. .NOT.WANTSN ) THEN
  662: *
  663: *        Eigenvectors requested -- work on whole matrix.
  664: *
  665:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  666:      $                LDVL, VR, LDVR, IERR )
  667:       ELSE
  668:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  669:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  670:       END IF
  671: *
  672: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
  673: *     Schur forms and Schur vectors)
  674: *     (Workspace: need N)
  675: *
  676:       IF( ILV .OR. .NOT.WANTSN ) THEN
  677:          CHTEMP = 'S'
  678:       ELSE
  679:          CHTEMP = 'E'
  680:       END IF
  681: *
  682:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  683:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK,
  684:      $             LWORK, IERR )
  685:       IF( IERR.NE.0 ) THEN
  686:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  687:             INFO = IERR
  688:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  689:             INFO = IERR - N
  690:          ELSE
  691:             INFO = N + 1
  692:          END IF
  693:          GO TO 130
  694:       END IF
  695: *
  696: *     Compute Eigenvectors and estimate condition numbers if desired
  697: *     (Workspace: DTGEVC: need 6*N
  698: *                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',
  699: *                         need N otherwise )
  700: *
  701:       IF( ILV .OR. .NOT.WANTSN ) THEN
  702:          IF( ILV ) THEN
  703:             IF( ILVL ) THEN
  704:                IF( ILVR ) THEN
  705:                   CHTEMP = 'B'
  706:                ELSE
  707:                   CHTEMP = 'L'
  708:                END IF
  709:             ELSE
  710:                CHTEMP = 'R'
  711:             END IF
  712: *
  713:             CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
  714:      $                   LDVL, VR, LDVR, N, IN, WORK, IERR )
  715:             IF( IERR.NE.0 ) THEN
  716:                INFO = N + 2
  717:                GO TO 130
  718:             END IF
  719:          END IF
  720: *
  721:          IF( .NOT.WANTSN ) THEN
  722: *
  723: *           compute eigenvectors (DTGEVC) and estimate condition
  724: *           numbers (DTGSNA). Note that the definition of the condition
  725: *           number is not invariant under transformation (u,v) to
  726: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
  727: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
  728: *           to avoid using extra 2*N*N workspace, we have to recalculate
  729: *           eigenvectors and estimate one condition numbers at a time.
  730: *
  731:             PAIR = .FALSE.
  732:             DO 20 I = 1, N
  733: *
  734:                IF( PAIR ) THEN
  735:                   PAIR = .FALSE.
  736:                   GO TO 20
  737:                END IF
  738:                MM = 1
  739:                IF( I.LT.N ) THEN
  740:                   IF( A( I+1, I ).NE.ZERO ) THEN
  741:                      PAIR = .TRUE.
  742:                      MM = 2
  743:                   END IF
  744:                END IF
  745: *
  746:                DO 10 J = 1, N
  747:                   BWORK( J ) = .FALSE.
  748:    10          CONTINUE
  749:                IF( MM.EQ.1 ) THEN
  750:                   BWORK( I ) = .TRUE.
  751:                ELSE IF( MM.EQ.2 ) THEN
  752:                   BWORK( I ) = .TRUE.
  753:                   BWORK( I+1 ) = .TRUE.
  754:                END IF
  755: *
  756:                IWRK = MM*N + 1
  757:                IWRK1 = IWRK + MM*N
  758: *
  759: *              Compute a pair of left and right eigenvectors.
  760: *              (compute workspace: need up to 4*N + 6*N)
  761: *
  762:                IF( WANTSE .OR. WANTSB ) THEN
  763:                   CALL DTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
  764:      $                         WORK( 1 ), N, WORK( IWRK ), N, MM, M,
  765:      $                         WORK( IWRK1 ), IERR )
  766:                   IF( IERR.NE.0 ) THEN
  767:                      INFO = N + 2
  768:                      GO TO 130
  769:                   END IF
  770:                END IF
  771: *
  772:                CALL DTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
  773:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
  774:      $                      RCONDV( I ), MM, M, WORK( IWRK1 ),
  775:      $                      LWORK-IWRK1+1, IWORK, IERR )
  776: *
  777:    20       CONTINUE
  778:          END IF
  779:       END IF
  780: *
  781: *     Undo balancing on VL and VR and normalization
  782: *     (Workspace: none needed)
  783: *
  784:       IF( ILVL ) THEN
  785:          CALL DGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
  786:      $                LDVL, IERR )
  787: *
  788:          DO 70 JC = 1, N
  789:             IF( ALPHAI( JC ).LT.ZERO )
  790:      $         GO TO 70
  791:             TEMP = ZERO
  792:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
  793:                DO 30 JR = 1, N
  794:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
  795:    30          CONTINUE
  796:             ELSE
  797:                DO 40 JR = 1, N
  798:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
  799:      $                   ABS( VL( JR, JC+1 ) ) )
  800:    40          CONTINUE
  801:             END IF
  802:             IF( TEMP.LT.SMLNUM )
  803:      $         GO TO 70
  804:             TEMP = ONE / TEMP
  805:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
  806:                DO 50 JR = 1, N
  807:                   VL( JR, JC ) = VL( JR, JC )*TEMP
  808:    50          CONTINUE
  809:             ELSE
  810:                DO 60 JR = 1, N
  811:                   VL( JR, JC ) = VL( JR, JC )*TEMP
  812:                   VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
  813:    60          CONTINUE
  814:             END IF
  815:    70    CONTINUE
  816:       END IF
  817:       IF( ILVR ) THEN
  818:          CALL DGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
  819:      $                LDVR, IERR )
  820:          DO 120 JC = 1, N
  821:             IF( ALPHAI( JC ).LT.ZERO )
  822:      $         GO TO 120
  823:             TEMP = ZERO
  824:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
  825:                DO 80 JR = 1, N
  826:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
  827:    80          CONTINUE
  828:             ELSE
  829:                DO 90 JR = 1, N
  830:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
  831:      $                   ABS( VR( JR, JC+1 ) ) )
  832:    90          CONTINUE
  833:             END IF
  834:             IF( TEMP.LT.SMLNUM )
  835:      $         GO TO 120
  836:             TEMP = ONE / TEMP
  837:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
  838:                DO 100 JR = 1, N
  839:                   VR( JR, JC ) = VR( JR, JC )*TEMP
  840:   100          CONTINUE
  841:             ELSE
  842:                DO 110 JR = 1, N
  843:                   VR( JR, JC ) = VR( JR, JC )*TEMP
  844:                   VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
  845:   110          CONTINUE
  846:             END IF
  847:   120    CONTINUE
  848:       END IF
  849: *
  850: *     Undo scaling if necessary
  851: *
  852:   130 CONTINUE
  853: *
  854:       IF( ILASCL ) THEN
  855:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
  856:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
  857:       END IF
  858: *
  859:       IF( ILBSCL ) THEN
  860:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  861:       END IF
  862: *
  863:       WORK( 1 ) = MAXWRK
  864:       RETURN
  865: *
  866: *     End of DGGEVX
  867: *
  868:       END

CVSweb interface <joel.bertrand@systella.fr>