File:  [local] / rpl / lapack / lapack / dggevx.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 4 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
    2:      $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
    3:      $                   IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
    4:      $                   RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
    5: *
    6: *  -- LAPACK driver routine (version 3.2) --
    7: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    8: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    9: *     November 2006
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
   13:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
   14:       DOUBLE PRECISION   ABNRM, BBNRM
   15: *     ..
   16: *     .. Array Arguments ..
   17:       LOGICAL            BWORK( * )
   18:       INTEGER            IWORK( * )
   19:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   20:      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
   21:      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
   22:      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
   23: *     ..
   24: *
   25: *  Purpose
   26: *  =======
   27: *
   28: *  DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
   29: *  the generalized eigenvalues, and optionally, the left and/or right
   30: *  generalized eigenvectors.
   31: *
   32: *  Optionally also, it computes a balancing transformation to improve
   33: *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
   34: *  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
   35: *  the eigenvalues (RCONDE), and reciprocal condition numbers for the
   36: *  right eigenvectors (RCONDV).
   37: *
   38: *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar
   39: *  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
   40: *  singular. It is usually represented as the pair (alpha,beta), as
   41: *  there is a reasonable interpretation for beta=0, and even for both
   42: *  being zero.
   43: *
   44: *  The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
   45: *  of (A,B) satisfies
   46: *
   47: *                   A * v(j) = lambda(j) * B * v(j) .
   48: *
   49: *  The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
   50: *  of (A,B) satisfies
   51: *
   52: *                   u(j)**H * A  = lambda(j) * u(j)**H * B.
   53: *
   54: *  where u(j)**H is the conjugate-transpose of u(j).
   55: *
   56: *
   57: *  Arguments
   58: *  =========
   59: *
   60: *  BALANC  (input) CHARACTER*1
   61: *          Specifies the balance option to be performed.
   62: *          = 'N':  do not diagonally scale or permute;
   63: *          = 'P':  permute only;
   64: *          = 'S':  scale only;
   65: *          = 'B':  both permute and scale.
   66: *          Computed reciprocal condition numbers will be for the
   67: *          matrices after permuting and/or balancing. Permuting does
   68: *          not change condition numbers (in exact arithmetic), but
   69: *          balancing does.
   70: *
   71: *  JOBVL   (input) CHARACTER*1
   72: *          = 'N':  do not compute the left generalized eigenvectors;
   73: *          = 'V':  compute the left generalized eigenvectors.
   74: *
   75: *  JOBVR   (input) CHARACTER*1
   76: *          = 'N':  do not compute the right generalized eigenvectors;
   77: *          = 'V':  compute the right generalized eigenvectors.
   78: *
   79: *  SENSE   (input) CHARACTER*1
   80: *          Determines which reciprocal condition numbers are computed.
   81: *          = 'N': none are computed;
   82: *          = 'E': computed for eigenvalues only;
   83: *          = 'V': computed for eigenvectors only;
   84: *          = 'B': computed for eigenvalues and eigenvectors.
   85: *
   86: *  N       (input) INTEGER
   87: *          The order of the matrices A, B, VL, and VR.  N >= 0.
   88: *
   89: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
   90: *          On entry, the matrix A in the pair (A,B).
   91: *          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
   92: *          or both, then A contains the first part of the real Schur
   93: *          form of the "balanced" versions of the input A and B.
   94: *
   95: *  LDA     (input) INTEGER
   96: *          The leading dimension of A.  LDA >= max(1,N).
   97: *
   98: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
   99: *          On entry, the matrix B in the pair (A,B).
  100: *          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
  101: *          or both, then B contains the second part of the real Schur
  102: *          form of the "balanced" versions of the input A and B.
  103: *
  104: *  LDB     (input) INTEGER
  105: *          The leading dimension of B.  LDB >= max(1,N).
  106: *
  107: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
  108: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
  109: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
  110: *          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
  111: *          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
  112: *          the j-th eigenvalue is real; if positive, then the j-th and
  113: *          (j+1)-st eigenvalues are a complex conjugate pair, with
  114: *          ALPHAI(j+1) negative.
  115: *
  116: *          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
  117: *          may easily over- or underflow, and BETA(j) may even be zero.
  118: *          Thus, the user should avoid naively computing the ratio
  119: *          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
  120: *          than and usually comparable with norm(A) in magnitude, and
  121: *          BETA always less than and usually comparable with norm(B).
  122: *
  123: *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
  124: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  125: *          after another in the columns of VL, in the same order as
  126: *          their eigenvalues. If the j-th eigenvalue is real, then
  127: *          u(j) = VL(:,j), the j-th column of VL. If the j-th and
  128: *          (j+1)-th eigenvalues form a complex conjugate pair, then
  129: *          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
  130: *          Each eigenvector will be scaled so the largest component have
  131: *          abs(real part) + abs(imag. part) = 1.
  132: *          Not referenced if JOBVL = 'N'.
  133: *
  134: *  LDVL    (input) INTEGER
  135: *          The leading dimension of the matrix VL. LDVL >= 1, and
  136: *          if JOBVL = 'V', LDVL >= N.
  137: *
  138: *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
  139: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  140: *          after another in the columns of VR, in the same order as
  141: *          their eigenvalues. If the j-th eigenvalue is real, then
  142: *          v(j) = VR(:,j), the j-th column of VR. If the j-th and
  143: *          (j+1)-th eigenvalues form a complex conjugate pair, then
  144: *          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
  145: *          Each eigenvector will be scaled so the largest component have
  146: *          abs(real part) + abs(imag. part) = 1.
  147: *          Not referenced if JOBVR = 'N'.
  148: *
  149: *  LDVR    (input) INTEGER
  150: *          The leading dimension of the matrix VR. LDVR >= 1, and
  151: *          if JOBVR = 'V', LDVR >= N.
  152: *
  153: *  ILO     (output) INTEGER
  154: *  IHI     (output) INTEGER
  155: *          ILO and IHI are integer values such that on exit
  156: *          A(i,j) = 0 and B(i,j) = 0 if i > j and
  157: *          j = 1,...,ILO-1 or i = IHI+1,...,N.
  158: *          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
  159: *
  160: *  LSCALE  (output) DOUBLE PRECISION array, dimension (N)
  161: *          Details of the permutations and scaling factors applied
  162: *          to the left side of A and B.  If PL(j) is the index of the
  163: *          row interchanged with row j, and DL(j) is the scaling
  164: *          factor applied to row j, then
  165: *            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
  166: *                      = DL(j)  for j = ILO,...,IHI
  167: *                      = PL(j)  for j = IHI+1,...,N.
  168: *          The order in which the interchanges are made is N to IHI+1,
  169: *          then 1 to ILO-1.
  170: *
  171: *  RSCALE  (output) DOUBLE PRECISION array, dimension (N)
  172: *          Details of the permutations and scaling factors applied
  173: *          to the right side of A and B.  If PR(j) is the index of the
  174: *          column interchanged with column j, and DR(j) is the scaling
  175: *          factor applied to column j, then
  176: *            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
  177: *                      = DR(j)  for j = ILO,...,IHI
  178: *                      = PR(j)  for j = IHI+1,...,N
  179: *          The order in which the interchanges are made is N to IHI+1,
  180: *          then 1 to ILO-1.
  181: *
  182: *  ABNRM   (output) DOUBLE PRECISION
  183: *          The one-norm of the balanced matrix A.
  184: *
  185: *  BBNRM   (output) DOUBLE PRECISION
  186: *          The one-norm of the balanced matrix B.
  187: *
  188: *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
  189: *          If SENSE = 'E' or 'B', the reciprocal condition numbers of
  190: *          the eigenvalues, stored in consecutive elements of the array.
  191: *          For a complex conjugate pair of eigenvalues two consecutive
  192: *          elements of RCONDE are set to the same value. Thus RCONDE(j),
  193: *          RCONDV(j), and the j-th columns of VL and VR all correspond
  194: *          to the j-th eigenpair.
  195: *          If SENSE = 'N or 'V', RCONDE is not referenced.
  196: *
  197: *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
  198: *          If SENSE = 'V' or 'B', the estimated reciprocal condition
  199: *          numbers of the eigenvectors, stored in consecutive elements
  200: *          of the array. For a complex eigenvector two consecutive
  201: *          elements of RCONDV are set to the same value. If the
  202: *          eigenvalues cannot be reordered to compute RCONDV(j),
  203: *          RCONDV(j) is set to 0; this can only occur when the true
  204: *          value would be very small anyway.
  205: *          If SENSE = 'N' or 'E', RCONDV is not referenced.
  206: *
  207: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  208: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  209: *
  210: *  LWORK   (input) INTEGER
  211: *          The dimension of the array WORK. LWORK >= max(1,2*N).
  212: *          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
  213: *          LWORK >= max(1,6*N).
  214: *          If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
  215: *          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
  216: *
  217: *          If LWORK = -1, then a workspace query is assumed; the routine
  218: *          only calculates the optimal size of the WORK array, returns
  219: *          this value as the first entry of the WORK array, and no error
  220: *          message related to LWORK is issued by XERBLA.
  221: *
  222: *  IWORK   (workspace) INTEGER array, dimension (N+6)
  223: *          If SENSE = 'E', IWORK is not referenced.
  224: *
  225: *  BWORK   (workspace) LOGICAL array, dimension (N)
  226: *          If SENSE = 'N', BWORK is not referenced.
  227: *
  228: *  INFO    (output) INTEGER
  229: *          = 0:  successful exit
  230: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  231: *          = 1,...,N:
  232: *                The QZ iteration failed.  No eigenvectors have been
  233: *                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
  234: *                should be correct for j=INFO+1,...,N.
  235: *          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
  236: *                =N+2: error return from DTGEVC.
  237: *
  238: *  Further Details
  239: *  ===============
  240: *
  241: *  Balancing a matrix pair (A,B) includes, first, permuting rows and
  242: *  columns to isolate eigenvalues, second, applying diagonal similarity
  243: *  transformation to the rows and columns to make the rows and columns
  244: *  as close in norm as possible. The computed reciprocal condition
  245: *  numbers correspond to the balanced matrix. Permuting rows and columns
  246: *  will not change the condition numbers (in exact arithmetic) but
  247: *  diagonal scaling will.  For further explanation of balancing, see
  248: *  section 4.11.1.2 of LAPACK Users' Guide.
  249: *
  250: *  An approximate error bound on the chordal distance between the i-th
  251: *  computed generalized eigenvalue w and the corresponding exact
  252: *  eigenvalue lambda is
  253: *
  254: *       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
  255: *
  256: *  An approximate error bound for the angle between the i-th computed
  257: *  eigenvector VL(i) or VR(i) is given by
  258: *
  259: *       EPS * norm(ABNRM, BBNRM) / DIF(i).
  260: *
  261: *  For further explanation of the reciprocal condition numbers RCONDE
  262: *  and RCONDV, see section 4.11 of LAPACK User's Guide.
  263: *
  264: *  =====================================================================
  265: *
  266: *     .. Parameters ..
  267:       DOUBLE PRECISION   ZERO, ONE
  268:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  269: *     ..
  270: *     .. Local Scalars ..
  271:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
  272:      $                   PAIR, WANTSB, WANTSE, WANTSN, WANTSV
  273:       CHARACTER          CHTEMP
  274:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
  275:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK,
  276:      $                   MINWRK, MM
  277:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  278:      $                   SMLNUM, TEMP
  279: *     ..
  280: *     .. Local Arrays ..
  281:       LOGICAL            LDUMMA( 1 )
  282: *     ..
  283: *     .. External Subroutines ..
  284:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
  285:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
  286:      $                   DTGSNA, XERBLA 
  287: *     ..
  288: *     .. External Functions ..
  289:       LOGICAL            LSAME
  290:       INTEGER            ILAENV
  291:       DOUBLE PRECISION   DLAMCH, DLANGE
  292:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  293: *     ..
  294: *     .. Intrinsic Functions ..
  295:       INTRINSIC          ABS, MAX, SQRT
  296: *     ..
  297: *     .. Executable Statements ..
  298: *
  299: *     Decode the input arguments
  300: *
  301:       IF( LSAME( JOBVL, 'N' ) ) THEN
  302:          IJOBVL = 1
  303:          ILVL = .FALSE.
  304:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
  305:          IJOBVL = 2
  306:          ILVL = .TRUE.
  307:       ELSE
  308:          IJOBVL = -1
  309:          ILVL = .FALSE.
  310:       END IF
  311: *
  312:       IF( LSAME( JOBVR, 'N' ) ) THEN
  313:          IJOBVR = 1
  314:          ILVR = .FALSE.
  315:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
  316:          IJOBVR = 2
  317:          ILVR = .TRUE.
  318:       ELSE
  319:          IJOBVR = -1
  320:          ILVR = .FALSE.
  321:       END IF
  322:       ILV = ILVL .OR. ILVR
  323: *
  324:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
  325:       WANTSN = LSAME( SENSE, 'N' )
  326:       WANTSE = LSAME( SENSE, 'E' )
  327:       WANTSV = LSAME( SENSE, 'V' )
  328:       WANTSB = LSAME( SENSE, 'B' )
  329: *
  330: *     Test the input arguments
  331: *
  332:       INFO = 0
  333:       LQUERY = ( LWORK.EQ.-1 )
  334:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
  335:      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
  336:      $     THEN
  337:          INFO = -1
  338:       ELSE IF( IJOBVL.LE.0 ) THEN
  339:          INFO = -2
  340:       ELSE IF( IJOBVR.LE.0 ) THEN
  341:          INFO = -3
  342:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
  343:      $          THEN
  344:          INFO = -4
  345:       ELSE IF( N.LT.0 ) THEN
  346:          INFO = -5
  347:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  348:          INFO = -7
  349:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  350:          INFO = -9
  351:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
  352:          INFO = -14
  353:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
  354:          INFO = -16
  355:       END IF
  356: *
  357: *     Compute workspace
  358: *      (Note: Comments in the code beginning "Workspace:" describe the
  359: *       minimal amount of workspace needed at that point in the code,
  360: *       as well as the preferred amount for good performance.
  361: *       NB refers to the optimal block size for the immediately
  362: *       following subroutine, as returned by ILAENV. The workspace is
  363: *       computed assuming ILO = 1 and IHI = N, the worst case.)
  364: *
  365:       IF( INFO.EQ.0 ) THEN
  366:          IF( N.EQ.0 ) THEN
  367:             MINWRK = 1
  368:             MAXWRK = 1
  369:          ELSE
  370:             IF( NOSCL .AND. .NOT.ILV ) THEN
  371:                MINWRK = 2*N
  372:             ELSE
  373:                MINWRK = 6*N
  374:             END IF
  375:             IF( WANTSE .OR. WANTSB ) THEN
  376:                MINWRK = 10*N
  377:             END IF
  378:             IF( WANTSV .OR. WANTSB ) THEN
  379:                MINWRK = MAX( MINWRK, 2*N*( N + 4 ) + 16 )
  380:             END IF
  381:             MAXWRK = MINWRK
  382:             MAXWRK = MAX( MAXWRK,
  383:      $                    N + N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) )
  384:             MAXWRK = MAX( MAXWRK,
  385:      $                    N + N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) )
  386:             IF( ILVL ) THEN
  387:                MAXWRK = MAX( MAXWRK, N +
  388:      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, 0 ) )
  389:             END IF
  390:          END IF
  391:          WORK( 1 ) = MAXWRK
  392: *
  393:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  394:             INFO = -26
  395:          END IF
  396:       END IF
  397: *
  398:       IF( INFO.NE.0 ) THEN
  399:          CALL XERBLA( 'DGGEVX', -INFO )
  400:          RETURN
  401:       ELSE IF( LQUERY ) THEN
  402:          RETURN
  403:       END IF
  404: *
  405: *     Quick return if possible
  406: *
  407:       IF( N.EQ.0 )
  408:      $   RETURN
  409: *
  410: *
  411: *     Get machine constants
  412: *
  413:       EPS = DLAMCH( 'P' )
  414:       SMLNUM = DLAMCH( 'S' )
  415:       BIGNUM = ONE / SMLNUM
  416:       CALL DLABAD( SMLNUM, BIGNUM )
  417:       SMLNUM = SQRT( SMLNUM ) / EPS
  418:       BIGNUM = ONE / SMLNUM
  419: *
  420: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  421: *
  422:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  423:       ILASCL = .FALSE.
  424:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  425:          ANRMTO = SMLNUM
  426:          ILASCL = .TRUE.
  427:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  428:          ANRMTO = BIGNUM
  429:          ILASCL = .TRUE.
  430:       END IF
  431:       IF( ILASCL )
  432:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
  433: *
  434: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  435: *
  436:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  437:       ILBSCL = .FALSE.
  438:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  439:          BNRMTO = SMLNUM
  440:          ILBSCL = .TRUE.
  441:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  442:          BNRMTO = BIGNUM
  443:          ILBSCL = .TRUE.
  444:       END IF
  445:       IF( ILBSCL )
  446:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
  447: *
  448: *     Permute and/or balance the matrix pair (A,B)
  449: *     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
  450: *
  451:       CALL DGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
  452:      $             WORK, IERR )
  453: *
  454: *     Compute ABNRM and BBNRM
  455: *
  456:       ABNRM = DLANGE( '1', N, N, A, LDA, WORK( 1 ) )
  457:       IF( ILASCL ) THEN
  458:          WORK( 1 ) = ABNRM
  459:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1,
  460:      $                IERR )
  461:          ABNRM = WORK( 1 )
  462:       END IF
  463: *
  464:       BBNRM = DLANGE( '1', N, N, B, LDB, WORK( 1 ) )
  465:       IF( ILBSCL ) THEN
  466:          WORK( 1 ) = BBNRM
  467:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1,
  468:      $                IERR )
  469:          BBNRM = WORK( 1 )
  470:       END IF
  471: *
  472: *     Reduce B to triangular form (QR decomposition of B)
  473: *     (Workspace: need N, prefer N*NB )
  474: *
  475:       IROWS = IHI + 1 - ILO
  476:       IF( ILV .OR. .NOT.WANTSN ) THEN
  477:          ICOLS = N + 1 - ILO
  478:       ELSE
  479:          ICOLS = IROWS
  480:       END IF
  481:       ITAU = 1
  482:       IWRK = ITAU + IROWS
  483:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  484:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
  485: *
  486: *     Apply the orthogonal transformation to A
  487: *     (Workspace: need N, prefer N*NB)
  488: *
  489:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  490:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
  491:      $             LWORK+1-IWRK, IERR )
  492: *
  493: *     Initialize VL and/or VR
  494: *     (Workspace: need N, prefer N*NB)
  495: *
  496:       IF( ILVL ) THEN
  497:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
  498:          IF( IROWS.GT.1 ) THEN
  499:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  500:      $                   VL( ILO+1, ILO ), LDVL )
  501:          END IF
  502:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
  503:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
  504:       END IF
  505: *
  506:       IF( ILVR )
  507:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
  508: *
  509: *     Reduce to generalized Hessenberg form
  510: *     (Workspace: none needed)
  511: *
  512:       IF( ILV .OR. .NOT.WANTSN ) THEN
  513: *
  514: *        Eigenvectors requested -- work on whole matrix.
  515: *
  516:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
  517:      $                LDVL, VR, LDVR, IERR )
  518:       ELSE
  519:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
  520:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
  521:       END IF
  522: *
  523: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
  524: *     Schur forms and Schur vectors)
  525: *     (Workspace: need N)
  526: *
  527:       IF( ILV .OR. .NOT.WANTSN ) THEN
  528:          CHTEMP = 'S'
  529:       ELSE
  530:          CHTEMP = 'E'
  531:       END IF
  532: *
  533:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
  534:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK,
  535:      $             LWORK, IERR )
  536:       IF( IERR.NE.0 ) THEN
  537:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
  538:             INFO = IERR
  539:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
  540:             INFO = IERR - N
  541:          ELSE
  542:             INFO = N + 1
  543:          END IF
  544:          GO TO 130
  545:       END IF
  546: *
  547: *     Compute Eigenvectors and estimate condition numbers if desired
  548: *     (Workspace: DTGEVC: need 6*N
  549: *                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',
  550: *                         need N otherwise )
  551: *
  552:       IF( ILV .OR. .NOT.WANTSN ) THEN
  553:          IF( ILV ) THEN
  554:             IF( ILVL ) THEN
  555:                IF( ILVR ) THEN
  556:                   CHTEMP = 'B'
  557:                ELSE
  558:                   CHTEMP = 'L'
  559:                END IF
  560:             ELSE
  561:                CHTEMP = 'R'
  562:             END IF
  563: *
  564:             CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
  565:      $                   LDVL, VR, LDVR, N, IN, WORK, IERR )
  566:             IF( IERR.NE.0 ) THEN
  567:                INFO = N + 2
  568:                GO TO 130
  569:             END IF
  570:          END IF
  571: *
  572:          IF( .NOT.WANTSN ) THEN
  573: *
  574: *           compute eigenvectors (DTGEVC) and estimate condition
  575: *           numbers (DTGSNA). Note that the definition of the condition
  576: *           number is not invariant under transformation (u,v) to
  577: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
  578: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
  579: *           to avoid using extra 2*N*N workspace, we have to recalculate
  580: *           eigenvectors and estimate one condition numbers at a time.
  581: *
  582:             PAIR = .FALSE.
  583:             DO 20 I = 1, N
  584: *
  585:                IF( PAIR ) THEN
  586:                   PAIR = .FALSE.
  587:                   GO TO 20
  588:                END IF
  589:                MM = 1
  590:                IF( I.LT.N ) THEN
  591:                   IF( A( I+1, I ).NE.ZERO ) THEN
  592:                      PAIR = .TRUE.
  593:                      MM = 2
  594:                   END IF
  595:                END IF
  596: *
  597:                DO 10 J = 1, N
  598:                   BWORK( J ) = .FALSE.
  599:    10          CONTINUE
  600:                IF( MM.EQ.1 ) THEN
  601:                   BWORK( I ) = .TRUE.
  602:                ELSE IF( MM.EQ.2 ) THEN
  603:                   BWORK( I ) = .TRUE.
  604:                   BWORK( I+1 ) = .TRUE.
  605:                END IF
  606: *
  607:                IWRK = MM*N + 1
  608:                IWRK1 = IWRK + MM*N
  609: *
  610: *              Compute a pair of left and right eigenvectors.
  611: *              (compute workspace: need up to 4*N + 6*N)
  612: *
  613:                IF( WANTSE .OR. WANTSB ) THEN
  614:                   CALL DTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
  615:      $                         WORK( 1 ), N, WORK( IWRK ), N, MM, M,
  616:      $                         WORK( IWRK1 ), IERR )
  617:                   IF( IERR.NE.0 ) THEN
  618:                      INFO = N + 2
  619:                      GO TO 130
  620:                   END IF
  621:                END IF
  622: *
  623:                CALL DTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
  624:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
  625:      $                      RCONDV( I ), MM, M, WORK( IWRK1 ),
  626:      $                      LWORK-IWRK1+1, IWORK, IERR )
  627: *
  628:    20       CONTINUE
  629:          END IF
  630:       END IF
  631: *
  632: *     Undo balancing on VL and VR and normalization
  633: *     (Workspace: none needed)
  634: *
  635:       IF( ILVL ) THEN
  636:          CALL DGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
  637:      $                LDVL, IERR )
  638: *
  639:          DO 70 JC = 1, N
  640:             IF( ALPHAI( JC ).LT.ZERO )
  641:      $         GO TO 70
  642:             TEMP = ZERO
  643:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
  644:                DO 30 JR = 1, N
  645:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
  646:    30          CONTINUE
  647:             ELSE
  648:                DO 40 JR = 1, N
  649:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
  650:      $                   ABS( VL( JR, JC+1 ) ) )
  651:    40          CONTINUE
  652:             END IF
  653:             IF( TEMP.LT.SMLNUM )
  654:      $         GO TO 70
  655:             TEMP = ONE / TEMP
  656:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
  657:                DO 50 JR = 1, N
  658:                   VL( JR, JC ) = VL( JR, JC )*TEMP
  659:    50          CONTINUE
  660:             ELSE
  661:                DO 60 JR = 1, N
  662:                   VL( JR, JC ) = VL( JR, JC )*TEMP
  663:                   VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
  664:    60          CONTINUE
  665:             END IF
  666:    70    CONTINUE
  667:       END IF
  668:       IF( ILVR ) THEN
  669:          CALL DGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
  670:      $                LDVR, IERR )
  671:          DO 120 JC = 1, N
  672:             IF( ALPHAI( JC ).LT.ZERO )
  673:      $         GO TO 120
  674:             TEMP = ZERO
  675:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
  676:                DO 80 JR = 1, N
  677:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
  678:    80          CONTINUE
  679:             ELSE
  680:                DO 90 JR = 1, N
  681:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
  682:      $                   ABS( VR( JR, JC+1 ) ) )
  683:    90          CONTINUE
  684:             END IF
  685:             IF( TEMP.LT.SMLNUM )
  686:      $         GO TO 120
  687:             TEMP = ONE / TEMP
  688:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
  689:                DO 100 JR = 1, N
  690:                   VR( JR, JC ) = VR( JR, JC )*TEMP
  691:   100          CONTINUE
  692:             ELSE
  693:                DO 110 JR = 1, N
  694:                   VR( JR, JC ) = VR( JR, JC )*TEMP
  695:                   VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
  696:   110          CONTINUE
  697:             END IF
  698:   120    CONTINUE
  699:       END IF
  700: *
  701: *     Undo scaling if necessary
  702: *
  703:       IF( ILASCL ) THEN
  704:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
  705:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
  706:       END IF
  707: *
  708:       IF( ILBSCL ) THEN
  709:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
  710:       END IF
  711: *
  712:   130 CONTINUE
  713:       WORK( 1 ) = MAXWRK
  714: *
  715:       RETURN
  716: *
  717: *     End of DGGEVX
  718: *
  719:       END

CVSweb interface <joel.bertrand@systella.fr>