Annotation of rpl/lapack/lapack/dggevx.f, revision 1.9

1.8       bertrand    1: *> \brief <b> DGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGGEVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggevx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggevx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggevx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
                     22: *                          ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
                     23: *                          IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
                     24: *                          RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
                     25: * 
                     26: *       .. Scalar Arguments ..
                     27: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
                     28: *       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                     29: *       DOUBLE PRECISION   ABNRM, BBNRM
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       LOGICAL            BWORK( * )
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     35: *      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
                     36: *      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
                     37: *      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
                     38: *       ..
                     39: *  
                     40: *
                     41: *> \par Purpose:
                     42: *  =============
                     43: *>
                     44: *> \verbatim
                     45: *>
                     46: *> DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B)
                     47: *> the generalized eigenvalues, and optionally, the left and/or right
                     48: *> generalized eigenvectors.
                     49: *>
                     50: *> Optionally also, it computes a balancing transformation to improve
                     51: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
                     52: *> LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for
                     53: *> the eigenvalues (RCONDE), and reciprocal condition numbers for the
                     54: *> right eigenvectors (RCONDV).
                     55: *>
                     56: *> A generalized eigenvalue for a pair of matrices (A,B) is a scalar
                     57: *> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
                     58: *> singular. It is usually represented as the pair (alpha,beta), as
                     59: *> there is a reasonable interpretation for beta=0, and even for both
                     60: *> being zero.
                     61: *>
                     62: *> The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
                     63: *> of (A,B) satisfies
                     64: *>
                     65: *>                  A * v(j) = lambda(j) * B * v(j) .
                     66: *>
                     67: *> The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
                     68: *> of (A,B) satisfies
                     69: *>
                     70: *>                  u(j)**H * A  = lambda(j) * u(j)**H * B.
                     71: *>
                     72: *> where u(j)**H is the conjugate-transpose of u(j).
                     73: *>
                     74: *> \endverbatim
                     75: *
                     76: *  Arguments:
                     77: *  ==========
                     78: *
                     79: *> \param[in] BALANC
                     80: *> \verbatim
                     81: *>          BALANC is CHARACTER*1
                     82: *>          Specifies the balance option to be performed.
                     83: *>          = 'N':  do not diagonally scale or permute;
                     84: *>          = 'P':  permute only;
                     85: *>          = 'S':  scale only;
                     86: *>          = 'B':  both permute and scale.
                     87: *>          Computed reciprocal condition numbers will be for the
                     88: *>          matrices after permuting and/or balancing. Permuting does
                     89: *>          not change condition numbers (in exact arithmetic), but
                     90: *>          balancing does.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] JOBVL
                     94: *> \verbatim
                     95: *>          JOBVL is CHARACTER*1
                     96: *>          = 'N':  do not compute the left generalized eigenvectors;
                     97: *>          = 'V':  compute the left generalized eigenvectors.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] JOBVR
                    101: *> \verbatim
                    102: *>          JOBVR is CHARACTER*1
                    103: *>          = 'N':  do not compute the right generalized eigenvectors;
                    104: *>          = 'V':  compute the right generalized eigenvectors.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] SENSE
                    108: *> \verbatim
                    109: *>          SENSE is CHARACTER*1
                    110: *>          Determines which reciprocal condition numbers are computed.
                    111: *>          = 'N': none are computed;
                    112: *>          = 'E': computed for eigenvalues only;
                    113: *>          = 'V': computed for eigenvectors only;
                    114: *>          = 'B': computed for eigenvalues and eigenvectors.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[in] N
                    118: *> \verbatim
                    119: *>          N is INTEGER
                    120: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
                    121: *> \endverbatim
                    122: *>
                    123: *> \param[in,out] A
                    124: *> \verbatim
                    125: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                    126: *>          On entry, the matrix A in the pair (A,B).
                    127: *>          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V'
                    128: *>          or both, then A contains the first part of the real Schur
                    129: *>          form of the "balanced" versions of the input A and B.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDA
                    133: *> \verbatim
                    134: *>          LDA is INTEGER
                    135: *>          The leading dimension of A.  LDA >= max(1,N).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[in,out] B
                    139: *> \verbatim
                    140: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
                    141: *>          On entry, the matrix B in the pair (A,B).
                    142: *>          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V'
                    143: *>          or both, then B contains the second part of the real Schur
                    144: *>          form of the "balanced" versions of the input A and B.
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[in] LDB
                    148: *> \verbatim
                    149: *>          LDB is INTEGER
                    150: *>          The leading dimension of B.  LDB >= max(1,N).
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] ALPHAR
                    154: *> \verbatim
                    155: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] ALPHAI
                    159: *> \verbatim
                    160: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] BETA
                    164: *> \verbatim
                    165: *>          BETA is DOUBLE PRECISION array, dimension (N)
                    166: *>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
                    167: *>          be the generalized eigenvalues.  If ALPHAI(j) is zero, then
                    168: *>          the j-th eigenvalue is real; if positive, then the j-th and
                    169: *>          (j+1)-st eigenvalues are a complex conjugate pair, with
                    170: *>          ALPHAI(j+1) negative.
                    171: *>
                    172: *>          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
                    173: *>          may easily over- or underflow, and BETA(j) may even be zero.
                    174: *>          Thus, the user should avoid naively computing the ratio
                    175: *>          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less
                    176: *>          than and usually comparable with norm(A) in magnitude, and
                    177: *>          BETA always less than and usually comparable with norm(B).
                    178: *> \endverbatim
                    179: *>
                    180: *> \param[out] VL
                    181: *> \verbatim
                    182: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
                    183: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
                    184: *>          after another in the columns of VL, in the same order as
                    185: *>          their eigenvalues. If the j-th eigenvalue is real, then
                    186: *>          u(j) = VL(:,j), the j-th column of VL. If the j-th and
                    187: *>          (j+1)-th eigenvalues form a complex conjugate pair, then
                    188: *>          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
                    189: *>          Each eigenvector will be scaled so the largest component have
                    190: *>          abs(real part) + abs(imag. part) = 1.
                    191: *>          Not referenced if JOBVL = 'N'.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[in] LDVL
                    195: *> \verbatim
                    196: *>          LDVL is INTEGER
                    197: *>          The leading dimension of the matrix VL. LDVL >= 1, and
                    198: *>          if JOBVL = 'V', LDVL >= N.
                    199: *> \endverbatim
                    200: *>
                    201: *> \param[out] VR
                    202: *> \verbatim
                    203: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
                    204: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
                    205: *>          after another in the columns of VR, in the same order as
                    206: *>          their eigenvalues. If the j-th eigenvalue is real, then
                    207: *>          v(j) = VR(:,j), the j-th column of VR. If the j-th and
                    208: *>          (j+1)-th eigenvalues form a complex conjugate pair, then
                    209: *>          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
                    210: *>          Each eigenvector will be scaled so the largest component have
                    211: *>          abs(real part) + abs(imag. part) = 1.
                    212: *>          Not referenced if JOBVR = 'N'.
                    213: *> \endverbatim
                    214: *>
                    215: *> \param[in] LDVR
                    216: *> \verbatim
                    217: *>          LDVR is INTEGER
                    218: *>          The leading dimension of the matrix VR. LDVR >= 1, and
                    219: *>          if JOBVR = 'V', LDVR >= N.
                    220: *> \endverbatim
                    221: *>
                    222: *> \param[out] ILO
                    223: *> \verbatim
                    224: *>          ILO is INTEGER
                    225: *> \endverbatim
                    226: *>
                    227: *> \param[out] IHI
                    228: *> \verbatim
                    229: *>          IHI is INTEGER
                    230: *>          ILO and IHI are integer values such that on exit
                    231: *>          A(i,j) = 0 and B(i,j) = 0 if i > j and
                    232: *>          j = 1,...,ILO-1 or i = IHI+1,...,N.
                    233: *>          If BALANC = 'N' or 'S', ILO = 1 and IHI = N.
                    234: *> \endverbatim
                    235: *>
                    236: *> \param[out] LSCALE
                    237: *> \verbatim
                    238: *>          LSCALE is DOUBLE PRECISION array, dimension (N)
                    239: *>          Details of the permutations and scaling factors applied
                    240: *>          to the left side of A and B.  If PL(j) is the index of the
                    241: *>          row interchanged with row j, and DL(j) is the scaling
                    242: *>          factor applied to row j, then
                    243: *>            LSCALE(j) = PL(j)  for j = 1,...,ILO-1
                    244: *>                      = DL(j)  for j = ILO,...,IHI
                    245: *>                      = PL(j)  for j = IHI+1,...,N.
                    246: *>          The order in which the interchanges are made is N to IHI+1,
                    247: *>          then 1 to ILO-1.
                    248: *> \endverbatim
                    249: *>
                    250: *> \param[out] RSCALE
                    251: *> \verbatim
                    252: *>          RSCALE is DOUBLE PRECISION array, dimension (N)
                    253: *>          Details of the permutations and scaling factors applied
                    254: *>          to the right side of A and B.  If PR(j) is the index of the
                    255: *>          column interchanged with column j, and DR(j) is the scaling
                    256: *>          factor applied to column j, then
                    257: *>            RSCALE(j) = PR(j)  for j = 1,...,ILO-1
                    258: *>                      = DR(j)  for j = ILO,...,IHI
                    259: *>                      = PR(j)  for j = IHI+1,...,N
                    260: *>          The order in which the interchanges are made is N to IHI+1,
                    261: *>          then 1 to ILO-1.
                    262: *> \endverbatim
                    263: *>
                    264: *> \param[out] ABNRM
                    265: *> \verbatim
                    266: *>          ABNRM is DOUBLE PRECISION
                    267: *>          The one-norm of the balanced matrix A.
                    268: *> \endverbatim
                    269: *>
                    270: *> \param[out] BBNRM
                    271: *> \verbatim
                    272: *>          BBNRM is DOUBLE PRECISION
                    273: *>          The one-norm of the balanced matrix B.
                    274: *> \endverbatim
                    275: *>
                    276: *> \param[out] RCONDE
                    277: *> \verbatim
                    278: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
                    279: *>          If SENSE = 'E' or 'B', the reciprocal condition numbers of
                    280: *>          the eigenvalues, stored in consecutive elements of the array.
                    281: *>          For a complex conjugate pair of eigenvalues two consecutive
                    282: *>          elements of RCONDE are set to the same value. Thus RCONDE(j),
                    283: *>          RCONDV(j), and the j-th columns of VL and VR all correspond
                    284: *>          to the j-th eigenpair.
                    285: *>          If SENSE = 'N or 'V', RCONDE is not referenced.
                    286: *> \endverbatim
                    287: *>
                    288: *> \param[out] RCONDV
                    289: *> \verbatim
                    290: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
                    291: *>          If SENSE = 'V' or 'B', the estimated reciprocal condition
                    292: *>          numbers of the eigenvectors, stored in consecutive elements
                    293: *>          of the array. For a complex eigenvector two consecutive
                    294: *>          elements of RCONDV are set to the same value. If the
                    295: *>          eigenvalues cannot be reordered to compute RCONDV(j),
                    296: *>          RCONDV(j) is set to 0; this can only occur when the true
                    297: *>          value would be very small anyway.
                    298: *>          If SENSE = 'N' or 'E', RCONDV is not referenced.
                    299: *> \endverbatim
                    300: *>
                    301: *> \param[out] WORK
                    302: *> \verbatim
                    303: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    304: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    305: *> \endverbatim
                    306: *>
                    307: *> \param[in] LWORK
                    308: *> \verbatim
                    309: *>          LWORK is INTEGER
                    310: *>          The dimension of the array WORK. LWORK >= max(1,2*N).
                    311: *>          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V',
                    312: *>          LWORK >= max(1,6*N).
                    313: *>          If SENSE = 'E' or 'B', LWORK >= max(1,10*N).
                    314: *>          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16.
                    315: *>
                    316: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    317: *>          only calculates the optimal size of the WORK array, returns
                    318: *>          this value as the first entry of the WORK array, and no error
                    319: *>          message related to LWORK is issued by XERBLA.
                    320: *> \endverbatim
                    321: *>
                    322: *> \param[out] IWORK
                    323: *> \verbatim
                    324: *>          IWORK is INTEGER array, dimension (N+6)
                    325: *>          If SENSE = 'E', IWORK is not referenced.
                    326: *> \endverbatim
                    327: *>
                    328: *> \param[out] BWORK
                    329: *> \verbatim
                    330: *>          BWORK is LOGICAL array, dimension (N)
                    331: *>          If SENSE = 'N', BWORK is not referenced.
                    332: *> \endverbatim
                    333: *>
                    334: *> \param[out] INFO
                    335: *> \verbatim
                    336: *>          INFO is INTEGER
                    337: *>          = 0:  successful exit
                    338: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    339: *>          = 1,...,N:
                    340: *>                The QZ iteration failed.  No eigenvectors have been
                    341: *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
                    342: *>                should be correct for j=INFO+1,...,N.
                    343: *>          > N:  =N+1: other than QZ iteration failed in DHGEQZ.
                    344: *>                =N+2: error return from DTGEVC.
                    345: *> \endverbatim
                    346: *
                    347: *  Authors:
                    348: *  ========
                    349: *
                    350: *> \author Univ. of Tennessee 
                    351: *> \author Univ. of California Berkeley 
                    352: *> \author Univ. of Colorado Denver 
                    353: *> \author NAG Ltd. 
                    354: *
                    355: *> \date November 2011
                    356: *
                    357: *> \ingroup doubleGEeigen
                    358: *
                    359: *> \par Further Details:
                    360: *  =====================
                    361: *>
                    362: *> \verbatim
                    363: *>
                    364: *>  Balancing a matrix pair (A,B) includes, first, permuting rows and
                    365: *>  columns to isolate eigenvalues, second, applying diagonal similarity
                    366: *>  transformation to the rows and columns to make the rows and columns
                    367: *>  as close in norm as possible. The computed reciprocal condition
                    368: *>  numbers correspond to the balanced matrix. Permuting rows and columns
                    369: *>  will not change the condition numbers (in exact arithmetic) but
                    370: *>  diagonal scaling will.  For further explanation of balancing, see
                    371: *>  section 4.11.1.2 of LAPACK Users' Guide.
                    372: *>
                    373: *>  An approximate error bound on the chordal distance between the i-th
                    374: *>  computed generalized eigenvalue w and the corresponding exact
                    375: *>  eigenvalue lambda is
                    376: *>
                    377: *>       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I)
                    378: *>
                    379: *>  An approximate error bound for the angle between the i-th computed
                    380: *>  eigenvector VL(i) or VR(i) is given by
                    381: *>
                    382: *>       EPS * norm(ABNRM, BBNRM) / DIF(i).
                    383: *>
                    384: *>  For further explanation of the reciprocal condition numbers RCONDE
                    385: *>  and RCONDV, see section 4.11 of LAPACK User's Guide.
                    386: *> \endverbatim
                    387: *>
                    388: *  =====================================================================
1.1       bertrand  389:       SUBROUTINE DGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB,
                    390:      $                   ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO,
                    391:      $                   IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE,
                    392:      $                   RCONDV, WORK, LWORK, IWORK, BWORK, INFO )
                    393: *
1.8       bertrand  394: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  395: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    396: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8       bertrand  397: *     November 2011
1.1       bertrand  398: *
                    399: *     .. Scalar Arguments ..
                    400:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
                    401:       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                    402:       DOUBLE PRECISION   ABNRM, BBNRM
                    403: *     ..
                    404: *     .. Array Arguments ..
                    405:       LOGICAL            BWORK( * )
                    406:       INTEGER            IWORK( * )
                    407:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    408:      $                   B( LDB, * ), BETA( * ), LSCALE( * ),
                    409:      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ),
                    410:      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
                    411: *     ..
                    412: *
                    413: *  =====================================================================
                    414: *
                    415: *     .. Parameters ..
                    416:       DOUBLE PRECISION   ZERO, ONE
                    417:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    418: *     ..
                    419: *     .. Local Scalars ..
                    420:       LOGICAL            ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY, NOSCL,
                    421:      $                   PAIR, WANTSB, WANTSE, WANTSN, WANTSV
                    422:       CHARACTER          CHTEMP
                    423:       INTEGER            I, ICOLS, IERR, IJOBVL, IJOBVR, IN, IROWS,
                    424:      $                   ITAU, IWRK, IWRK1, J, JC, JR, M, MAXWRK,
                    425:      $                   MINWRK, MM
                    426:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
                    427:      $                   SMLNUM, TEMP
                    428: *     ..
                    429: *     .. Local Arrays ..
                    430:       LOGICAL            LDUMMA( 1 )
                    431: *     ..
                    432: *     .. External Subroutines ..
                    433:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD,
                    434:      $                   DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC,
                    435:      $                   DTGSNA, XERBLA 
                    436: *     ..
                    437: *     .. External Functions ..
                    438:       LOGICAL            LSAME
                    439:       INTEGER            ILAENV
                    440:       DOUBLE PRECISION   DLAMCH, DLANGE
                    441:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    442: *     ..
                    443: *     .. Intrinsic Functions ..
                    444:       INTRINSIC          ABS, MAX, SQRT
                    445: *     ..
                    446: *     .. Executable Statements ..
                    447: *
                    448: *     Decode the input arguments
                    449: *
                    450:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    451:          IJOBVL = 1
                    452:          ILVL = .FALSE.
                    453:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    454:          IJOBVL = 2
                    455:          ILVL = .TRUE.
                    456:       ELSE
                    457:          IJOBVL = -1
                    458:          ILVL = .FALSE.
                    459:       END IF
                    460: *
                    461:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    462:          IJOBVR = 1
                    463:          ILVR = .FALSE.
                    464:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    465:          IJOBVR = 2
                    466:          ILVR = .TRUE.
                    467:       ELSE
                    468:          IJOBVR = -1
                    469:          ILVR = .FALSE.
                    470:       END IF
                    471:       ILV = ILVL .OR. ILVR
                    472: *
                    473:       NOSCL  = LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'P' )
                    474:       WANTSN = LSAME( SENSE, 'N' )
                    475:       WANTSE = LSAME( SENSE, 'E' )
                    476:       WANTSV = LSAME( SENSE, 'V' )
                    477:       WANTSB = LSAME( SENSE, 'B' )
                    478: *
                    479: *     Test the input arguments
                    480: *
                    481:       INFO = 0
                    482:       LQUERY = ( LWORK.EQ.-1 )
                    483:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
                    484:      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
                    485:      $     THEN
                    486:          INFO = -1
                    487:       ELSE IF( IJOBVL.LE.0 ) THEN
                    488:          INFO = -2
                    489:       ELSE IF( IJOBVR.LE.0 ) THEN
                    490:          INFO = -3
                    491:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSB .OR. WANTSV ) )
                    492:      $          THEN
                    493:          INFO = -4
                    494:       ELSE IF( N.LT.0 ) THEN
                    495:          INFO = -5
                    496:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    497:          INFO = -7
                    498:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    499:          INFO = -9
                    500:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    501:          INFO = -14
                    502:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    503:          INFO = -16
                    504:       END IF
                    505: *
                    506: *     Compute workspace
                    507: *      (Note: Comments in the code beginning "Workspace:" describe the
                    508: *       minimal amount of workspace needed at that point in the code,
                    509: *       as well as the preferred amount for good performance.
                    510: *       NB refers to the optimal block size for the immediately
                    511: *       following subroutine, as returned by ILAENV. The workspace is
                    512: *       computed assuming ILO = 1 and IHI = N, the worst case.)
                    513: *
                    514:       IF( INFO.EQ.0 ) THEN
                    515:          IF( N.EQ.0 ) THEN
                    516:             MINWRK = 1
                    517:             MAXWRK = 1
                    518:          ELSE
                    519:             IF( NOSCL .AND. .NOT.ILV ) THEN
                    520:                MINWRK = 2*N
                    521:             ELSE
                    522:                MINWRK = 6*N
                    523:             END IF
                    524:             IF( WANTSE .OR. WANTSB ) THEN
                    525:                MINWRK = 10*N
                    526:             END IF
                    527:             IF( WANTSV .OR. WANTSB ) THEN
                    528:                MINWRK = MAX( MINWRK, 2*N*( N + 4 ) + 16 )
                    529:             END IF
                    530:             MAXWRK = MINWRK
                    531:             MAXWRK = MAX( MAXWRK,
                    532:      $                    N + N*ILAENV( 1, 'DGEQRF', ' ', N, 1, N, 0 ) )
                    533:             MAXWRK = MAX( MAXWRK,
                    534:      $                    N + N*ILAENV( 1, 'DORMQR', ' ', N, 1, N, 0 ) )
                    535:             IF( ILVL ) THEN
                    536:                MAXWRK = MAX( MAXWRK, N +
                    537:      $                       N*ILAENV( 1, 'DORGQR', ' ', N, 1, N, 0 ) )
                    538:             END IF
                    539:          END IF
                    540:          WORK( 1 ) = MAXWRK
                    541: *
                    542:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    543:             INFO = -26
                    544:          END IF
                    545:       END IF
                    546: *
                    547:       IF( INFO.NE.0 ) THEN
                    548:          CALL XERBLA( 'DGGEVX', -INFO )
                    549:          RETURN
                    550:       ELSE IF( LQUERY ) THEN
                    551:          RETURN
                    552:       END IF
                    553: *
                    554: *     Quick return if possible
                    555: *
                    556:       IF( N.EQ.0 )
                    557:      $   RETURN
                    558: *
                    559: *
                    560: *     Get machine constants
                    561: *
                    562:       EPS = DLAMCH( 'P' )
                    563:       SMLNUM = DLAMCH( 'S' )
                    564:       BIGNUM = ONE / SMLNUM
                    565:       CALL DLABAD( SMLNUM, BIGNUM )
                    566:       SMLNUM = SQRT( SMLNUM ) / EPS
                    567:       BIGNUM = ONE / SMLNUM
                    568: *
                    569: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    570: *
                    571:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    572:       ILASCL = .FALSE.
                    573:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    574:          ANRMTO = SMLNUM
                    575:          ILASCL = .TRUE.
                    576:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    577:          ANRMTO = BIGNUM
                    578:          ILASCL = .TRUE.
                    579:       END IF
                    580:       IF( ILASCL )
                    581:      $   CALL DLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR )
                    582: *
                    583: *     Scale B if max element outside range [SMLNUM,BIGNUM]
                    584: *
                    585:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    586:       ILBSCL = .FALSE.
                    587:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    588:          BNRMTO = SMLNUM
                    589:          ILBSCL = .TRUE.
                    590:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    591:          BNRMTO = BIGNUM
                    592:          ILBSCL = .TRUE.
                    593:       END IF
                    594:       IF( ILBSCL )
                    595:      $   CALL DLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR )
                    596: *
                    597: *     Permute and/or balance the matrix pair (A,B)
                    598: *     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise)
                    599: *
                    600:       CALL DGGBAL( BALANC, N, A, LDA, B, LDB, ILO, IHI, LSCALE, RSCALE,
                    601:      $             WORK, IERR )
                    602: *
                    603: *     Compute ABNRM and BBNRM
                    604: *
                    605:       ABNRM = DLANGE( '1', N, N, A, LDA, WORK( 1 ) )
                    606:       IF( ILASCL ) THEN
                    607:          WORK( 1 ) = ABNRM
                    608:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, 1, 1, WORK( 1 ), 1,
                    609:      $                IERR )
                    610:          ABNRM = WORK( 1 )
                    611:       END IF
                    612: *
                    613:       BBNRM = DLANGE( '1', N, N, B, LDB, WORK( 1 ) )
                    614:       IF( ILBSCL ) THEN
                    615:          WORK( 1 ) = BBNRM
                    616:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, 1, 1, WORK( 1 ), 1,
                    617:      $                IERR )
                    618:          BBNRM = WORK( 1 )
                    619:       END IF
                    620: *
                    621: *     Reduce B to triangular form (QR decomposition of B)
                    622: *     (Workspace: need N, prefer N*NB )
                    623: *
                    624:       IROWS = IHI + 1 - ILO
                    625:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    626:          ICOLS = N + 1 - ILO
                    627:       ELSE
                    628:          ICOLS = IROWS
                    629:       END IF
                    630:       ITAU = 1
                    631:       IWRK = ITAU + IROWS
                    632:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    633:      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
                    634: *
                    635: *     Apply the orthogonal transformation to A
                    636: *     (Workspace: need N, prefer N*NB)
                    637: *
                    638:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    639:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
                    640:      $             LWORK+1-IWRK, IERR )
                    641: *
                    642: *     Initialize VL and/or VR
                    643: *     (Workspace: need N, prefer N*NB)
                    644: *
                    645:       IF( ILVL ) THEN
                    646:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
                    647:          IF( IROWS.GT.1 ) THEN
                    648:             CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    649:      $                   VL( ILO+1, ILO ), LDVL )
                    650:          END IF
                    651:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    652:      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
                    653:       END IF
                    654: *
                    655:       IF( ILVR )
                    656:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
                    657: *
                    658: *     Reduce to generalized Hessenberg form
                    659: *     (Workspace: none needed)
                    660: *
                    661:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    662: *
                    663: *        Eigenvectors requested -- work on whole matrix.
                    664: *
                    665:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    666:      $                LDVL, VR, LDVR, IERR )
                    667:       ELSE
                    668:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    669:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR )
                    670:       END IF
                    671: *
                    672: *     Perform QZ algorithm (Compute eigenvalues, and optionally, the
                    673: *     Schur forms and Schur vectors)
                    674: *     (Workspace: need N)
                    675: *
                    676:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    677:          CHTEMP = 'S'
                    678:       ELSE
                    679:          CHTEMP = 'E'
                    680:       END IF
                    681: *
                    682:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    683:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK,
                    684:      $             LWORK, IERR )
                    685:       IF( IERR.NE.0 ) THEN
                    686:          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
                    687:             INFO = IERR
                    688:          ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN
                    689:             INFO = IERR - N
                    690:          ELSE
                    691:             INFO = N + 1
                    692:          END IF
                    693:          GO TO 130
                    694:       END IF
                    695: *
                    696: *     Compute Eigenvectors and estimate condition numbers if desired
                    697: *     (Workspace: DTGEVC: need 6*N
                    698: *                 DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B',
                    699: *                         need N otherwise )
                    700: *
                    701:       IF( ILV .OR. .NOT.WANTSN ) THEN
                    702:          IF( ILV ) THEN
                    703:             IF( ILVL ) THEN
                    704:                IF( ILVR ) THEN
                    705:                   CHTEMP = 'B'
                    706:                ELSE
                    707:                   CHTEMP = 'L'
                    708:                END IF
                    709:             ELSE
                    710:                CHTEMP = 'R'
                    711:             END IF
                    712: *
                    713:             CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL,
                    714:      $                   LDVL, VR, LDVR, N, IN, WORK, IERR )
                    715:             IF( IERR.NE.0 ) THEN
                    716:                INFO = N + 2
                    717:                GO TO 130
                    718:             END IF
                    719:          END IF
                    720: *
                    721:          IF( .NOT.WANTSN ) THEN
                    722: *
                    723: *           compute eigenvectors (DTGEVC) and estimate condition
                    724: *           numbers (DTGSNA). Note that the definition of the condition
                    725: *           number is not invariant under transformation (u,v) to
                    726: *           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized
                    727: *           Schur form (S,T), Q and Z are orthogonal matrices. In order
                    728: *           to avoid using extra 2*N*N workspace, we have to recalculate
                    729: *           eigenvectors and estimate one condition numbers at a time.
                    730: *
                    731:             PAIR = .FALSE.
                    732:             DO 20 I = 1, N
                    733: *
                    734:                IF( PAIR ) THEN
                    735:                   PAIR = .FALSE.
                    736:                   GO TO 20
                    737:                END IF
                    738:                MM = 1
                    739:                IF( I.LT.N ) THEN
                    740:                   IF( A( I+1, I ).NE.ZERO ) THEN
                    741:                      PAIR = .TRUE.
                    742:                      MM = 2
                    743:                   END IF
                    744:                END IF
                    745: *
                    746:                DO 10 J = 1, N
                    747:                   BWORK( J ) = .FALSE.
                    748:    10          CONTINUE
                    749:                IF( MM.EQ.1 ) THEN
                    750:                   BWORK( I ) = .TRUE.
                    751:                ELSE IF( MM.EQ.2 ) THEN
                    752:                   BWORK( I ) = .TRUE.
                    753:                   BWORK( I+1 ) = .TRUE.
                    754:                END IF
                    755: *
                    756:                IWRK = MM*N + 1
                    757:                IWRK1 = IWRK + MM*N
                    758: *
                    759: *              Compute a pair of left and right eigenvectors.
                    760: *              (compute workspace: need up to 4*N + 6*N)
                    761: *
                    762:                IF( WANTSE .OR. WANTSB ) THEN
                    763:                   CALL DTGEVC( 'B', 'S', BWORK, N, A, LDA, B, LDB,
                    764:      $                         WORK( 1 ), N, WORK( IWRK ), N, MM, M,
                    765:      $                         WORK( IWRK1 ), IERR )
                    766:                   IF( IERR.NE.0 ) THEN
                    767:                      INFO = N + 2
                    768:                      GO TO 130
                    769:                   END IF
                    770:                END IF
                    771: *
                    772:                CALL DTGSNA( SENSE, 'S', BWORK, N, A, LDA, B, LDB,
                    773:      $                      WORK( 1 ), N, WORK( IWRK ), N, RCONDE( I ),
                    774:      $                      RCONDV( I ), MM, M, WORK( IWRK1 ),
                    775:      $                      LWORK-IWRK1+1, IWORK, IERR )
                    776: *
                    777:    20       CONTINUE
                    778:          END IF
                    779:       END IF
                    780: *
                    781: *     Undo balancing on VL and VR and normalization
                    782: *     (Workspace: none needed)
                    783: *
                    784:       IF( ILVL ) THEN
                    785:          CALL DGGBAK( BALANC, 'L', N, ILO, IHI, LSCALE, RSCALE, N, VL,
                    786:      $                LDVL, IERR )
                    787: *
                    788:          DO 70 JC = 1, N
                    789:             IF( ALPHAI( JC ).LT.ZERO )
                    790:      $         GO TO 70
                    791:             TEMP = ZERO
                    792:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    793:                DO 30 JR = 1, N
                    794:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
                    795:    30          CONTINUE
                    796:             ELSE
                    797:                DO 40 JR = 1, N
                    798:                   TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
                    799:      $                   ABS( VL( JR, JC+1 ) ) )
                    800:    40          CONTINUE
                    801:             END IF
                    802:             IF( TEMP.LT.SMLNUM )
                    803:      $         GO TO 70
                    804:             TEMP = ONE / TEMP
                    805:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    806:                DO 50 JR = 1, N
                    807:                   VL( JR, JC ) = VL( JR, JC )*TEMP
                    808:    50          CONTINUE
                    809:             ELSE
                    810:                DO 60 JR = 1, N
                    811:                   VL( JR, JC ) = VL( JR, JC )*TEMP
                    812:                   VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
                    813:    60          CONTINUE
                    814:             END IF
                    815:    70    CONTINUE
                    816:       END IF
                    817:       IF( ILVR ) THEN
                    818:          CALL DGGBAK( BALANC, 'R', N, ILO, IHI, LSCALE, RSCALE, N, VR,
                    819:      $                LDVR, IERR )
                    820:          DO 120 JC = 1, N
                    821:             IF( ALPHAI( JC ).LT.ZERO )
                    822:      $         GO TO 120
                    823:             TEMP = ZERO
                    824:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    825:                DO 80 JR = 1, N
                    826:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
                    827:    80          CONTINUE
                    828:             ELSE
                    829:                DO 90 JR = 1, N
                    830:                   TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
                    831:      $                   ABS( VR( JR, JC+1 ) ) )
                    832:    90          CONTINUE
                    833:             END IF
                    834:             IF( TEMP.LT.SMLNUM )
                    835:      $         GO TO 120
                    836:             TEMP = ONE / TEMP
                    837:             IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    838:                DO 100 JR = 1, N
                    839:                   VR( JR, JC ) = VR( JR, JC )*TEMP
                    840:   100          CONTINUE
                    841:             ELSE
                    842:                DO 110 JR = 1, N
                    843:                   VR( JR, JC ) = VR( JR, JC )*TEMP
                    844:                   VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
                    845:   110          CONTINUE
                    846:             END IF
                    847:   120    CONTINUE
                    848:       END IF
                    849: *
                    850: *     Undo scaling if necessary
                    851: *
                    852:       IF( ILASCL ) THEN
                    853:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAR, N, IERR )
                    854:          CALL DLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHAI, N, IERR )
                    855:       END IF
                    856: *
                    857:       IF( ILBSCL ) THEN
                    858:          CALL DLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR )
                    859:       END IF
                    860: *
                    861:   130 CONTINUE
                    862:       WORK( 1 ) = MAXWRK
                    863: *
                    864:       RETURN
                    865: *
                    866: *     End of DGGEVX
                    867: *
                    868:       END

CVSweb interface <joel.bertrand@systella.fr>